INFORMATION
CROSSROADS
|OF THE 80s

25 SENNNNRRNTEREX

HOSTED BY BALTIMORE/WASHINGTON RUG

PROCEEDINGS
HP 3000/SERIES 100

VOLUME II

R TR, ——iaa————

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

INTEREX

the International Association of

Hewlett—Packard Computer Users Compute;

< Museum

Proceedings

of the

1985 CONFERENCE

Washington, D.C.
Hosted by the

Baltimore—Washington Regional
Users Group

Papers for the

3000

and
Series 100
VOLUME Il

PAPER 3043-3091

Sam Inks, Editor

BALTIMORE WASHINGTON-REGIONAL USERS GROUP INTEREX8S5

VOLUME i

Introduction

This volume of the Proceedings of the INTEREX 1985 North American
Conference was printed from machine readable text supplied by the
authors (with a few exceptions). Each paper was formatted in TDP
and printed on an HP2680A Laser Printer.

Thanks go to the authors who sent their papers in on time and in
the requested formats. Special thanks to the Review Committee for
all of their time, efforts and suggestions.

A special thanks also to those who have helped me keep my sanity,
typed the non-machine readable papers, held meetings at their
house or in some other manner lent their own time and support to
the publishing of these proceedings.

REVIEW COMMITTEE SPECIAL PEOPLE
Nick Demos Dean Gabersek
Sam Inks Millie Gabersek
Suzanne Perez John Grether
Joan Peters Dorothy Inks
Kevin Rhea Lee Mauck

Chris Seiger Mary Moorer

Nancy Murray
Ron Smirlock

I would also like to offer special thanks to Jim Cummins, my
boss, and to Atlantic Research Corporation for allowing me the
time to participate in this undertaking and for the use of the HP
Computer systems.

My thanks also to F. Stephen Gauss of the HP1000 group for his
help and support.

WASHINGTON, D. C.

1

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

Index by Author Vol.

Beasley, Dave Hewlett-Packard

How Dispatching Queues Really WorK..........eoveeuos. 3065 1
Bircher, Carolyn Hewlett-Packard

Writing Effic¢ient Programs in Fortran 77........... .3076 i
Boles, Sam Hewlett-Packard

Unix Thru The Eyes of MPE........... e 3083 1t
Boles, Sam Hewlett-Packard

A Blend of HP3000/HP9000 For Computer Graphics...... 3066 14
Bowers, Keith & Beauchemin, Denys Northern Telcom

Things That Go Bump in The HP3000.........0ccvueun. 3018 1
Boyd, Larry Dallas Times Herald

The Segmenter........vveiuivnenns. Ve e 3005 |
Butler, Stephen M. Weyerhaeuser

Dictionary/3000-~-Extended TOUT . avuserrereenerennnns 3006 |
Carroll, Bryan Hewlett-Packard

MPE Disc Caching........ovvvrnnunvnannnnen e 3068 It
Casteel, Michael Computing Capabilities Corp

Anatomy of a True Distributed Processing

Application., e v, 03029 (
Chang, Wanyen Longs Drugs

The Sorted File Access Method.....,..c......vvunenn. 3036 1
Clark, Brice Hewlett-Packard

Positioning Local Area NetWorKS........ocvvivnernnnns 3092 tt
Clemons, Brett Consultant

Using Intrinsics in COBOL Programs......... P 3027 i
Clifton, Roy Hewlett-Packard

North American Response Center.................c..0.. 3054 B
Cornford, M. G. Northrop Corporation

There’s Got To Be A Pony Here, Somewhere............ 3024 !
Depp, James A. UPTIME
) Recovery by Design.....cuvuiivirnenennunennnnnnn 3053 B
Duncombe, Brian Carolian Systems Inc.

Performance Self Analysis.......c.vivieneninnunenes .3025 1
East, Ellie Media General

Training: The Key To Success With Personal

Lo 5 e b 8 =T o3 P 3011 !
East, Ellie Media General

Information Center: Implementation Using HP3000

and HP150. . . ittt i ittt ittt st 3026 1
Engberg, Tony Hewlett-Packard

Response Time: Speeding Up the Man/Machine

B0 7S o Y- AP 3060 it
fisher, Eric S. Wellington Management flo.

You Said You Have a Bunch of Micros Linked

To Your HP3000? Great!! Now What?........c.venvuennn. 3035 |
Floyd, Terry H. ASK Computer Systems

CIM Is Not A Software Package or a Magic Wire....... 3010 !
Fochtman, Jerry Exxon Chemical Americas

Emulating A Real Time, Multi-Tasking Application

System on the HP3000. ...ttt inr i ennnnnnnnns 3038 I

b

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

franklin, Bill Hewlett-Packard

Software Technology for the 80’s (Understanding

Key Current and Future Technologies)...v..vvvuviunns 3009 I
Gerstenhaber, Peter CMS Ltd.

Cooperating Processes in an Information Network.....3051 i
Grim, Jelle Holland House

The Twilight Zone, Between MPE Capabilities.....30L5 11
Gross, Gail Hewlett-Packard

Training and Supporting Office Systems Users........ 3019 1
Hirsh, Scott RCM

Change Management: An Operations Perspective.,......3084 i
Hoeft, Mark L. Hewlett-Packard

Developing Cost Effective Utilities and

Applications Using Business Basic/3000......caeunans 3067 '
Holt, Wayne Union College

Communicating in a Mixed Vendor Environment......... 3031 I
ldema, Tom Westinghouse Furniture Systems

The Role of The System Manager................ el e3072 i
Isloor, Srekaanth Cognos

The Ultimate Challenge in Appllcatlon De51gn

Managing Data Integration..... Vs i esare-s 30T '

Kaminski, Thomas J. Singer
Migrating Information Between HP3000 Data Bases,
Electronic Spreadsheets and Microcomputer

Data BaseS...v.venreenvinierens et v aerareee L3042 |
Rane, Peter Hewlett- Packard

TurboIMAGE Run Time Options.....veivevsuvsre cevesese..3039 |
Karlin, Robert Consultant

Auditability: or What’s a Nice Byte Like You

Doing in a Base Like This?..... b v v resa e 3061 i
Ropecky, Jerry Illinois Criminal Justice Authority

Operational Considerations for Police Networks..... L3077 1t
Rorb, John P. Innovative Software Solutions

Store-and-Forward Data Transmission in a

Multi-System NetworK............. e ov o 00 30L6 1
Larson, Orland Hewlett-Packard

Application Prototyping: A Proven Approach to

Information Systems Design and Development..........3081 M
Lawsoun, Roger Proactive Systems

The Use of IMAGE Transaction Logging in a
Multi Data Base, Multi Machine Configuration to
Achieve A Non-Stop, Fault Tolerant HP3000 System....3023 I

Lewis, Donn Allegheny Beverage Corp.

Building Your Own X.25 Data NetWworK.......e.v.uee.ne .3040 |
Mattson, Robert R. WIDCO

Why Software Projects Don’t Quite Succeed........... 3034 |

McDermott, James T. Consultant
Rational Structuring Techniques for COBOLII/3000

Maintainablity................. . 10 ¥4
McGinn, Dennis Hewlett-Packard
An OSI Networking Architecture for Multi-Vendor
Networking......o.ovviinieneaninveeneanoan. PR «««3007 {
o]

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

Miller, Marv Hewlett-Packard

The Application Development Environment

of the 80°S.cveniinvecincsnnnns et B 1 0, ¥4 1t
Naber, Lance L.J. Naber & Associates

Ergonomics and VPLUS/3000 Screen Design.............3020 t
Neilson, Tom Hewlett-Packard

Simple Steps to Optimize Transact/3000

Applications......... R 101 1 Vi
Neuhaus, Peter Hewlett-Packard

Techniques for Developing Device Independent

Graphics Software...vieveversverssssrcnscearonosenrs.3090 1
Olsen, Roger Productive Software Systems

A Guide to Software Evaluation and Selection........3017 |
Olson, Tad Hewlett-Packard

The Effectiveness and Shortcomings of Using

Programming ToolsS.....ecveeeeesas et eeevesne.3037 !
Overman, James S. EXXON

Manufacturing Application Experiences Implementing
HP’s Materials Management (MM), Production
Management (PM), Maintenance Management (MNT) and

HPFA...... s et sttt B () [0
Porter, Steve DP Systems

Turbo Pascal and AGIOS on the HP150....c.vevc.uervss..3050 Il
Rego, Alfredo Adager

Natural Data Base Normalizing....e.cesuasesansaceess.3075 H
Rego, Alfredo Adager

The Drama Behind The System Status Bulletin (SSB)...3082 1t
Remillard, Robert Infocentre, Ltd.

Opportunities and Dangers of LGL'S..eivcuecen.... ...3004 {
Rodriguez, Julia Hewlett-Packard

The New COBOL Standard: "What’s in it for You"......3003 1
Scheil, Dennis Base 8 Systems Inc.

KSAM Survival Techniques......... G (0 1Y I
Schulz, Duane Hewlett-Packard

Fitting Printer Technologies with Personal

Computer and Office Applications......... vesrecense.3073 {
Scott, George B. ELDEC

Using Process Handling to Optimize Throughput

in a Transaction Oriented System......eeo... taeee.e.3058 1"
Scroggs, Ross Telemon

Everything You Wanted to Know About Interfacing

to the HP3000: The Inside Story...esesesescocses3055 1
Setian, Kathy Hewlett-Packard

Personal or Powerful.......i.cvviveetevecacensans...3002 1
Shoemaker, Victoria Mitchell Humphrey

Software Design: Building Flexibility....cecsecece-n. 3044 !
Simmons, E. R., Ph. D

Information and Humanity.....eeiiesevcrncerronss3059 1
Skrabak, John T Baltimore Aircoil

HP3000--Gateway TO SUCCESS. .. cassnasccacscasaacanns 3022 [
Snesrud, Wallace M. General Mills

4GL and Reality....... P 0 -1 § 1
Solland, Leigh Cognos

How to Design for the Fourth Generation.............3013 |

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

Stewart, Dwight Hewlett-Packard

Spoolfile Recovery Without. a Warmstart..............
Sullivan, Charles Pacific Coast Building Products

The HP3000: A Data Base Engine..........c.ovveinann.
Tobak, Bruce Consultant

Performance Optimization in COBOL.............
Van Geesbergen, Rene’ Holland House

The Poor Man’s DS, Fact or Fiction..................
Volokh, Eugene VESOFT

Secrets of System Tables..Revealed..................
Wallace, Mark Robinson, Wallace & Co.

UGL’s: Use and Abuse...... e e
Whitehurst, Otis Vermont Housing Finance Agency

Writing Intelligent Software..........cviivvenunenns
Wilhelm, Lisa & Lukoff, Stan E.I. DuPont

Transact & 3rd Party Software Tools Used in a

Large On-Line Environment............... fveaeeseee e

3091 tH
3030 1
3057 t
3016 i
3014 }
3085 tH
3028 t
3069 "

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Index by Title

UGL and Reality.vvcurericrrsvraerosrroosareoaansannann ...3021
Snesrud, Wallace M. General Mills
UGL’s: Use and ADUSE..veveetrrrrsnvssrressosonescaonsraes.3085

Wallace, Mark Robinson, Wallace & Co.
A Guide to Software Evaluation and Selection...sveesees..3017
Olsen, Roger Productive Software Systems

Anatomy of a True Distributed Processing
Application...ccvevsricresrsnriecersinsessaseesness.3029
Casteel, Michael Computing Capabilities Corp

Application Prototyping: A Proven Approach to
Information Systems Design and Development..........3081
Larson, Orland Hewlett-Packard

Auditability: or What’s a Nice Byte Like You
Doing in a Base Like This?.....evvrvvrcenniennsnsss.3061

Karlin, Robert Consultant

A Blend of HP3000/HP9000 For Computer Graphics...........3066
Boles, Sam Hewlett-Packard

An OSI Networking Architecture for Multi-Vendor
Networking..... ottt ettt et ey eeenreses.3007
McGinn, Dennis Hewlett-Packar

Building Your Own X.25 Data NetWorK....ee.oeeeeonveress..3040
Lewis, Donn Allegheny Beverage Corp.

CIM Is Not A Software Package or a Magic Wire.....¢s...,.3010
Floyd, Terry H. ASK Computer Systems

Change Management: An Operations Perspective....secess,..3084
Hirsh, Scott RCM

Communicating in a Mixed Vendor Enviromment........,.....3031
Holt, Wayne Union College

Cooperating Processes in an Information Network....,.....3051
Gerstenhaber, Peter CMS Ltd.

Developing Cost Effective Utilities and
Applications Using Business Basic/3000..,.:s400000...3067
Hoeft, Mark L. Hewlett-Packard

Dictionary/3000--Extended TOUT. :.ovvrvervoensercorssssss.3006
Butler, Stephen M. Weyerhaeuser

Emulating A Real Time, Multi-Tasking Application
System on the HP3000. ..ot evervvrvorvoesorroosvenss.3038

Fochtman, Jerry Exxon Chemical Americas
Ergonomics and VPLUS/3000 Screen Design....ccvevsiseress.3020
Naber, Lance L.J. Naber & Associates

Everything You Wanted to Know About Interfacing
to the HP3000: The Inside Story..cicessecsivsorsaeses.3055
Scroggs, Ross Telemon

Fitting Printer Technologies with Personal
Computer and Office Applications........ve0vveee....3073

Schulz, Duane Hewlett-Packard

HP3000--Gateway To SUCCESS...:.coveervivenerenersosrsoes.3022
Skrabak, John T Baltimore Aircoil

How Dispatching Queues Really Work..... erearerseasaeny. 3065
Beasley, Dave Hewlett-Packard

How to Design for the Fourth Generation..s.:ceceeouveesss.3013
Solland, Leigh Cognos

£

Vol.

1t

Tt

1t

tt

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

Information Center: Implementation Using HP3000

and HP150. .. ievenvecenn et v e e e st aa s e b o e e e e 3026 t
East, Ellie Media General

Information and Humanity....... G 1015 1¢]
Simmons, E. R., Ph. D

KSAM Survival Techniques..eesssneesossneceroonssessonsss. 3049 it
Scheil, Dennis Base 8 Systems Inc.

Manufacturing Application Experiences Implementing
HP’s Materials Management (MM), Production
Management (PM), Maintenance Management (MNT) and

2 1 24 O - Ceei i aens eessess..3001 !
Overman, James S. EXXON

MPE Disc Caching....vevsveseersnnss et et 3068 11
Carroll, Bryan Hewlett-Packard

Migrating Information Between HP3000 Data Bases,
Electronic Spreadsheets and Microcomputer

Data BaseS...iveveve- G (01 1Y~ t
Kaminski, Thomas J. Singer

Natural Data Base Normalizing.....eo.eeevovscecensresssss.3075 I
Rego, Alfredo Adager

North American Response Center......eoreeecesesnsorcscse..305h 1
Clifton, Roy Hewlett-Packard

Operational Considerations for Police Networks...........3077]
Kopecky, Jerry Illinois Criminal Justice Authority

Opportunities and Dangers of u4GL’s......... G 001 !
Remillard, Robert Infocentre, Ltd.

Performance Self Analysis........ Ceresreesransesernsrres.3025 t
Duncombe, Brian Carolian Systems Inc.

Performance Optimization in COBOL....,eievoveussacessons.3057 tt
Tobak, Bruce Consultant

Personal or Powerful...seeeervuneannas L PG {1 To -4 1
Setian, Kathy Hewlett-Packard

Positioning Local Area Networks.........vvveeesverssses..3092 i
Clark, Brice Hewlett-Packard

Rational Structuring Techniques for COBOLII/3000
Maintainablity........... PG 1 ¢ 1 24 !
McDermott, James T. Consultant

Recovery by Desigh...iverineeriionsessssscnsoarsonrrssen..3053 1
Depp, James A. UPTIME

Response Time: Speeding Up the Man/Machine
Interface.coovvvereronsns et ebeeer it e e, 3060 t
Engberg, Tony Hewlett-Packard

Secrets of System Tables..Revealed....vieressssvessrsss..301h t
Volokh, Eugene VESOFT

Simple Steps to Optimize Transact/3000
Applications. ..o viviiiensinennreens Ch et eet e 3043 It
Neilson, Tom Hewlett-Packard

g

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

Software Design: Building Flexibility.................... 304y 1
Shoemaker, Victoria Mitchell Humphrey
Software Technology for the 80’s (Understanding

Key Current and Future Technologies)................ 3009 1
Franklin, Bill Hewlett-Packard

Spoolfile Recovery Without a Warmstart................... 3001 1
Stewart, Dwight Hewlett-Packard

Store-and-Forward Data Transmission in a
Multi-System NetWOrK.ivevereneneeneneraraonnans 3046 11
Korb, John P. Innovative Software Solutions

Techniques for Developing Device Independent
Graphics SoftwWare. ottt iinesonenannnas 3090 1R
Neuhaus, Peter Hewlett-Packard

The Application Development Environment
of the B0 8. ittt it e s esaeanenannns 3052 H
Miller, Marv Hewlett-Packard

The Drama Behind The System Status Bulletin (SSB)........ 3082 H
Rego, Alfredo Adager

The HP3000: A Data Base Engine.......... et 3030 1
Sullivan, Charles Pacific Coast Building Products

The New COBOL Standard: "What’s in it for You"........... 3003 1
Rodriguez, Julia Hewlett-Packard

The Poor Man’s DS, Fact or Fiction........vvvuuuvnn. «....3016 1
Van Geesbergen, Rene’ Holland House

The Role of The System Manager........eveeeveenneeeonanns 3071 1
Idema, Tom Westinghouse Furniture Systems

The Segmenter. ..o vttt it eseeononeneeeesessnnnnnnes 3005 |
Boyd, Larry Dallas Times Herald

The Sorted File Access Method............. i 3036]
Chang, Wanyen Longs Drugs

The Twilight Zone, Between MPE Capabilities.............. 3045 1l
Grim, Jelle Holland House

The Effectiveness and Shortcomings of Using
Programming ToOlS. ... v viiniunnneoneonnnesossoans 3037 !
Olson, Tad Hewlett-Packard

The Use of IMAGE Transaction Logging in a
Multi Data Base, Multi Machine Configuration to
Achieve A Non-Stop, Fault Tolerant HP3000 System....3023 1

Lawson, Roger Proactive Systems

There’s Got To Be A Pony Here, Somewhere........oveeeveens 3024 1
Cornford, M. G. Northrop Corporation

Things That Go Bump in The HP3000.......cvvvrinrsenncnnns 3018 1
Bowers, Keith & Beauchemin, Denys Northern Telcom

Training and Supporting Office Systems Users............. 3019 1
Gross, Gail Hewlett-Packard

Training: The Key To Suctess With Personal
COMPUL LS. s vt vt e rortssottvonoennssonsssnasanans veee 3012 1
East, Ellie Media General

Transact & 3rd Party Software Tools Used in a
Large On-Line Environment.........covviceenreeranean 3069 Il
Wilhelm, Lisa & Lukoff, Stan E.I. DuPont

Turbo Pascal and AGIOS on the HP150.. ... ccvermeerennenens 3050 1
Porter, Steve DP Systems

TurboIMAGE Run Time Options.....coviiiniiireroenonvoansss 3039 |

h

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

Kane, Peter Hewlett-Packard

The Ultimate Challenge in Application Desigh:
Managing Data Integration............ Preeeae
Isloor, Srekaanth Cognos

Unix Thru The Eyes of MPE.......oty
Boles, Sam Hewlett-Packard

Using Process Handling to Optimize Throughput
in a Transaction Oriented System..... e reeeas
Scott, George B. ELDEC

Using Intrinsics in COBOL Programs.................
Clemons, Brett Consultant

Why Software Projects Don’t Quite Succeed..........
Mattson, Robert R. WIDCO

Writing Efficient Programs in Fortran 77....... o
Bircher, Carolyn Hewlett-Packard

Writing Intelligent Software..................... ..

NTEREX8S

...... 307k 1t
e 3083 11

ceen..3058 T

Whitehurst, Otis Vermont Housing Finance Agency

You Said You Have a Bunch of Micros Linked
To Your HP3000? Great!! Now What?.............
Fisher, Eric S. Wellington Management Co.

WASHINGTON, D. €.

BALTIMORE WASHING TON REGIONAL USERS GROUP INTEREX8S%

3043. SIMPLE STEPS TO OPTIMIZE TRANSACT/3000 APPLICATIONS

TOM NIELSEN
MWC ATC
HP-NAPERVILLE

(222222222l i e il Ryt yyy)

The trend towards higher labor costs and lower hardware costs in today’s
economy has led to a rapid increase in the use of a class of computer
productivity tools called "Fourth Generation Languages (4GL’s)." LUGL’s
are designed to relieve the programmer of much of the tedious coding
required by many traditional languages, allowing the programmer to code
at a much higher, and productive level. This reduction in programmer
effort results in the inherent tradeoff that the computer is now faced
with the task of doing more of the work in order to make the application
run. This increased burden on the computer resources invariably causes
the topic of performance ramifications to be brought up in nearly every
discussion of 4GL’s. While LUGL’s inherently use more computer resources
than conventional languages, there are many techniques the programmer
can use to attempt to minimize this difference.

The following paper attempts to outline numerous techniques that are
avaliable to programmers creating TRANSACT/3000 (Hewlett Packard’s
version of a 4GL) applications which will improve their program’s
efficiency significantly with minimal effort. The format will be to
first discuss the generalities of each performance optimizing technique
in light of TRANSACT/3000’s methodology. This general discussion will
then be substantiated with short test programs designed to highlight the
performance ramifications of various techniques.

Since many of the test programs utilize an IMAGE data base, a
familiarity with that data base may be helpful in the analysis of
certain portions of code. For this reason, a schema listing of the
IMAGE data base TESTB has been included as APPENDIX B. Listings of the
test programs and their results are also included in APPENDIX B.
APPENDIX A includes an explanation of the testing procedures used.

RAERBARABRRRRRRRRRRRRBRRRRRRRRRRRRRRRRRRRRERRRBRRRRRRRRRRRRRRARRRRERN

P oL 1
aper 3043 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

1. MINIMIZE DATA ACCESSED FROM IMAGE DATA BASE FILES

This statement goes beyond the obvious of advising against unnecessary
accesses to a data file and stresses the optimization of each data
access verb (ie. GET, FIND, OUTPUT, PUT). Since TRANSACT data access
verbs actually call IMAGE intrinsics directly, this point can be used to
improve performance for programs coded in any language.

When a program accesses a data item, the IMAGE intrinsic must first
determine that item’s data base relative item number from the data base
root file. The security matrix (also in the IMAGE root file) must then
be checked to verify that the password used to open the data base grants
the appropriate access to that item. These two overhead operations must
be performed for each item requested by the program for each access.
Understandably, then, the fewer items the program attempts to access,
the less time it will take for the IMAGE intrinsics to transfer the data
to/from the program’s DATA register.

Unfortunately, this relatively simple step is often bypassed by many
programmers. Reasons seem to vary from ignorance of the functions of
the LIST= option to the philosophy that it’s just easier to retrieve all
the data so that whatever the program may need down the road will be
available in the DATA register. The former could be resolved with
adequate training and experience, and the latter could be resolved with
good initial program design.

The TRANSACT Reference Manual makes it very clear that the only items
absolutely required in the LIST= option are those items that are being
used as MATCH criteria in selecting specifi¢ records. Perhaps the
biggest misconception is that key or search items must be included in
the LIST= option of retrieval verbs. This is entirely false using
TRANSACT, and differs from the rules present when calling the IMAGE
intrinsics directly from ordinary languages. In fact, for most keyed
access retrievals, the program already has the desired value (we had to
use it to set up the Key and Argument registers). Who knows how many
millions of unnecessary item retrievals are being done on search items
alone.

Programs T1 and T2 highlight the performance implications of retrieving
unnecessary data from an IMAGE data set. Both programs center around a
FIND(SERIAL) command which retrieves 150 detail records. The only
difference between the two is that Tl retrieves values for all six items
in the data set, while T2 retrieves values for only one item. An
initial GET is inserted to remove the irrelevant overhead of opening the
dataset from the timed loop. The PERFORM= paragraph performs a data base
access to eliminate any optimization of the list parameter that either
TRANSACT or IMAGE may attempt on the iterative FIND verb.

Paper 3043 2 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

RARRARRARRARRARRRRRRRRARRRRRARRARARARAARARARARAARARARARARARAARRARRR

PROGRAM # OF ITEMS RELEVANT
NAME RETRIEVED ELAPSED
TIME
saRRARRRRANS TYYYYYYYYS Bannnnnn
™ 6 2999
T2 1 2516

(X222 2222222222222 22 222222 2 2 XXX 222222 2222222222 222221222222 2222222}

Paper 304
per 30L3 3 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

1I. STRUCTURE THE LIST= OPTION TO OPTIMIZE PERFORMANCE

Performance optimization suggestion I dealt with the idea of minimizing
the number of items which are accessed from an IMAGE data base. Once
the programmer has decided on the items which must be accessed, however,
there are further simple steps which can be taken to improve
performance. These steps deal with the structuring of the LIST= option
of data access verbs.

As the TRANSACT Reference Manual indicates, there are numerous methods
to indicate which items are to be accessed. The most common of these
seem to be:

1. LIST=(iteml:itemn) requests retrieval of values for all
items in the LIST register between
iteml and itemn, inclusive.

2. LIST=(iteml,..,itemn) requests retrieval of values for
the specific items listed.

3. LIST=(@) a feature as of A.02.02 which
specifies all items in the data
set.

While the second option is often simpler to implement, as it does not
require any strategic management of the LIST register, it is also less
efficient as far as program execution. Specifying the LIST= option as
an item range (as in example #1), on the other hand, will result in
faster execution, but is more difficult to manage the LIST register, as
the programmer must attempt to put items that are accessed at the same
time contiguously in the LIST register. The idea of different data
access verbs requesting a different combination of items leads to
complication of this process. Performance tests indicate that specifying
LIST=(@) is identical to specifying all items via an item range,
assuming that range includes all items.

Many programmers agonize over how to build the program’s LIST register
so that they may always use the more efficient item range construct. It
should be noted that minimization of data access should take precedence
over this concern and thus the LIST register should be constructed to
allow the item range construct to be used in the most frequent data
access verbs (use test modes or temporary DISPLAY statements to
determine the most frequent verbs). The remainder of the data access
verbs, then, should simply use an item list construct. To attempt to
manipulate the LIST register to allow item ranges for all verbs would be
quite laborious, probably end up slowing execution, and would cause many
debugging nightmares.

Programs T9, T3, and Th highlight the performance ramifications of
different LIST= constructs. Program T9 uses an item range, T3 uses an
jitem list, and T4 uses a variation on the item range that is even a
little faster than the traditional iteml:itemn construct. TU uses the
itemn construct which specifies retrieval values for all items in the
LIST register from the bottom of the LIST register through itemn. This
technique turns out to be a little more efficient because of reduced
search time of the linked list (see performance suggestion III). It

Paper 3043 4 WASHINGTON, D. C.

.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

should be noted here that while the performance difference may be smali
in the test programs supplied, these programs only reference six (6)
items. The performance ramifications would obviously become more
substantial as the number of items accessed increased.

RARRARRRARARARRARRARRARARRARRARARRAARARRARARAARARRARAARARAAARARAARAAAARARRAN

PROGRAM LIST= RELEVANT
NAME CONSTRUCT ELAPSED
TIME
AARARARN RARAARARR AARRAAR
T9 (ITEML: ITEMN) 2665
T3 (ITEM1,ITEM2,...,ITEMN) 2863
T (: ITEMN) 2659

RARARARRRAARARRARARAAAAARARRARARARARAARRARARRARARARARRARRRRRARARAARARARARAARR

o4
Paper 3043 5 WASHINGTON, D. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

III. PLACE FREQUENTLY USED ITEMS NEAR THE TOP OF THE LIST REGISTER

Every time a program references a data item’s value, TRANSACT must first
locate the corresponding item name in the LIST register, which then maps
to the appropriate location in the DATA register. Since TRANSACT allows
multiple occurrences of the same item name in the LIST register,
TRANSACT can not use a direct, or hashed, search method to locate the
item in the LIST register. Instead, TRANSACT maintains the items in the
LIST register as a linked list which is searched whenever a data item
name is referenced. The search will continue down the linked list until
one of two conditions occur:

1. The item name being searched for is found, providing a map
into the DATA register.

2. The linked list is exhausted without finding the item name
being searched for, in which case the run-time error
"ITEM NOT FOUND IN LIST REGISTER" will occur.

Obviously, we are more interested in case #1, as case #2 is merely a
programming error which must be corrected.

Understanding the direction of the search is crucial to optimizing a
program’s performance. If the programmer can minimize the time taken by
each search (which, remember, occurs every time a data item is
referenced) the program will, as a direct result, take less time to
execute. As it turns out, the search starts out at the top of the LIST
register (ie. it starts with the item most recently put into the LIST
register) and works its way to the beginning (or bottom) of the LIST
register. In order to minimize search times, then, frequently accessed
items should be added to the LIST register last. This optimization
technique is even more crucial for applications using a large number of
data items, as search times can become significant.

Programs TS and T6 point out the performance implications of putting
frequently used items near the top of the LIST register. Both programs
have a relatively large LIST register (129 items). Program TS accesses
an item near the top of the LIST register 200 times while T6 accesses an
item at the bottom of the LIST register. Note the significant
difference in execution time between the two otherwise identical
programs.

(XIS IELSLE R S SRR RS LIS S LSS SRS S L 2 R R RS YLy s

PROGRAM POSITION OF NUMBER OF RELEVANT

NAME ITEM IN LIST ACCESSES ELAPSED
TIME

E 222X 2 3 RBERBRRRNBNRNNN 9 349 5 3 3% 9 % L2222 2 2

T5 TOP (#128) 200 1490

T6 BOTTOM (#1) 200 1827

(222 R IR ILLILLLS SRS 2RI 222 ey e d iyl

Paper 3043 6 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

IV. REDUCE TRANSACT'S MANAGEMENT OF THE WORK AREA

This performance optimizing suggestion is perhaps the least frequently
thought of by TRANSACT programmers. With each TRANSACT application
comes an area called the WORK AREA, which is a temporary work area
containing the MATCH, UPDATE, and INPUT registers. Every time the
program utilizes these special registers, an entry is put into this work
area, which is implemented as a linked list. Whenever an entry is
deleted from these registers {(ie. via RESET(OPTION)), TRANSACT merely
flags the entry in the linked list as deleted, but does not return that
space to the reusable state. With repeated use of these registers,
then, the WORK AREA, which has a user specified size {via the
WORK=option on the SYSTEM statement), will soon become full of "deleted”
entries. When this occurs, TRANSACT will automatically call a routine
called REWORK, which will actually delete the previously flagged entries
and return that space to the available list.

In order to improve program performance, the programmer should attempt
to minimize the number of times REWORK must be called. This can be
achieved by increasing the size of the WORK AREA via the WORK= option of
the SYSTEM statement. Increasing the WORK AREA, however, will increase
stack usage at run time, so it must be done with care. Perhaps a
realistic approach is to attempt to minimize the calling of REWORK ,
while at the same time monitoring stack usage to keep it appropriate for
your specific system.

Test modes 102 and 123 should be used in making these adjustments to the
WORK AREA. Test mode 102 reports statistics on WORK AREA usage during
execution, while test mode 123 prints a warning message to TRANOUT
everytime REWORK is called.

Programs T7 and T8 highlight the difference in program execution time
when we minimize reorganization of the WORK AREA by increasing its size.
T7 has a small work area and requires 124 reorganizations of the WORK
AREA, while T8 only requires 6, hence exectution time is decreased.

L2332 2 2222222222 22222 222 sl sl dlasdadt sz s ssLyy

PROGRAM WORK AREA REWORK RELEVANT
NAME SIZE CALLED ELAPSED
TIME
RN RRRRRRR HAnnnnn BERRRRRRS
T7 15 WORDS 124 2181
T8 255 WORDS 6 2151

LA 22 2222222222 st s e s a sl s L Ly]

Paper 3043 7 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 885

V. OPTIMIZE NUMERIC CALCULATIONS

TRANSACT was intended as a transaction processing tool as well as a
prototyping tool. Unfortunately, TRANSACT is not terribly efficient
when it comes to things like number crunching, because of some data type
conversion operations performed. A few simple techniques, however, can
at least make any necessary numeric calculations a little less time
consuming.

Perhaps the most common suggestion for streamlining TRANSACT number
crunching is to have the TRANSACT application invoke (via the PROC verb)
some external routine written in a more efficient language to do the
calculations for TRANSACT. This suggestion, however, does have a couple
of weaknesses. It first assumes that another programming language is
available on the system, and second it assumes that all number crunching
is done at one time in the program. It does not take into account the
idea of "sporadic” calculations done throughout the TRANSACT
application. The suggestions presented below will help optimize
TRANSACT applications in both of these instances.

The first suggestion is to choose an appropriate data type for elements
that will be involved in numeric calculations. The chart below
indicates Real (R)and Integer (I) are the most efficient data types for
numeric calculations, while Zone Decimal type (2) is the worst. If your
application permits then, attempt to make all variables that will be
used extensively in calculations type R or I. Counter items are an
excellent example of items which should be streamlined.

The second suggestion to minimize the amount of overhead incurred by
TRANSACT numeric calculations is to make all elements involved the same
type and decimal scale if possible. This will reduce the amount of type
conversion that TRANSACT must do before the calculations (done by a
procedure called CALCULATE). An example is programs T10, T15, and T16.
T10 crunches two I(5,0,2) elements in 1446 relative CPU seconds; T15
crunches two R(6,0,4) fields in 1446 relative CPU seconds. But when we
crunch one item of I(5,0,2) and one of R(6,0,4) together as we do in
T16, note the increase to 2332, which is higher than the calculation
using two of the less efficient Z type variables.

The chart below, then, depicts nine programs which do 100 relevant
numeric calculations with the only difference being the type and decimal
scale of variables used.

Paper 3043 8 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

AARARAARRARNARNARAARARARRARARARNANAARARAAAARAARANARARARRARNRRARRAANARS

PROGRAM VARIABLE VARIABLE MAXIMUM RELEVANT

NAME 1 #2 OPERAND ELAPSED
VALUE TIME

X1 XX RARRRARN L2222 X2 2) RARRABAN AARRRARES
T10 1(5,0,2) SAME AS #1 32,767 1446
T11 1(10,0,h) SAME AS #1 2,1L7,483,6L8 1446
T12 2(4,0,L) SAME AS #1 9,999 2171
T13 z(8,0,8) SAME AS #1 99,999,999 2187
T14 P(7,0,4) SAME AS #1 9,999,999 1491
T15 R{6,0,k4) SAME AS #1 999,999 1446
T16 1(5,0,2) R(6,0,L4) 2332
T17 1(10,0,k) I(7,2,L) 2k55
T18 P(7,0,4) P(7,2,4) 1511

RRRARARRARRRRARRRARRRARRRRRAARRARARRRRRARRAAARARRRRRRARARNRRARNRANRNRRRRRS

Paper 304
per 30L3 9 WASHINGTON, D. G.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

Vi. OPTIMIZE INTERNAL DATA TRANSFERS

Transact offers two verbs to be used in transferring values from one
data item to another. Unfortunately, many people seem to be unclear, or
misinformed, about the difference between these two verbs and in which
situations to use either. The following discussion should clear up
these misconceptions of TRANSACT’s MOVE and LET verbs, and points out
how the appropriate use of the MOVE verb can improve performance.

TRANSACT's MOVE verb is specifically designed for straight data transfer
from one location in the DATA register to another and for alphanumeric
operations. Unfortunately. the TRANSACT reference manual’s discussion
almost leads you to believe that the MOVE verb can only be used when
manipulating (transferring or concatenating) alphanumeric values. To
many people’s surprise, however, the MOVE verb can also be used to
transfer numeric values. There are, however, certain limitations
inherent in the MOVE verb:

1. No numeric calculations can be done with the MOVE verb.

2. The MOVE verb does not do data type conversions, so both source
and destination variables should be the same type.

Because of the fact that MOVE does no data type conversions, it is a
relatively fast verb for data transfer. Programmers should thus use the
MOVE verb for both alphanumeric and numeric data transfer operations
between like type data elements. Only for those operations involving
incompatible data elements and/or numeric calculations should the LET
verb be used.

Programs T20 and T21 point out a very simple example of the increased
performance of using MOVE over LET. T20 performs 100 MOVE operations,
moving an I(9) value to another I(9) field. T2l uses the LET verb
instead of the MOVE.

WRRRRRRRARRRRRRRRRRRRRRRRRRRBRRRRRRRRRRRRRRRRRBRRRRRRRRRRRARRRBRRRNRN

PROGRAM VERB RELEVANT
NAME USED ELAPSED
TIME
Ly nnnn nERBRRRN
T20 MOVE 759
T21 LET 800

r“*“**ﬂ*lllﬂl“ﬂ““ﬂﬂ“ﬂ““ﬂﬂ““ﬂ“ﬂﬂﬂﬂﬂ““ﬂﬂ“*“ﬂﬂ“ﬂﬂlﬂﬂﬂ“ﬂ“ﬂﬂ“ﬂﬂ.ﬂﬂ*ﬂ““ﬂ““ﬂ'

Paper 30L3 10 WASHINGTON, D. €

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

Vil. USE FILE VERB FOR MPE FILE OPERATIONS

Transact offers two methods for reading, writing, updating, and sorting
MPE files. Unfortunately, because of the fact that most programmers are
more familiar with the data management verbs (ie. PUT, GET etc) used
with IMAGE files, they use these less efficient verbs when interacting
with MPE files as well. Because of the fact that these verbs were
designed to work with the more complex data base files, as well as to be
generic enough to work with all types of files, they incur much overhead
which is not necessary in working with MPE files.

The more efficient method for interacting with MPE files is the FILE
verb. This verb has modifiers which allow programmers to read, write,
update, or sort MPE files, As the sample program indicates below, the
FILE verb is much more efficient than the data management verbs.
Unfortunately, the FILE verb does not utilize TRANSACT's special
registers, so its uses are limited to operations such as a straight
serial read or simple additions to the file.

(222222222 X222 2222 2222 22 2222222222222 2222222 22222222 2222 s dy)

PROGRAM VERB FREQUENCY RELEVANT

NAME USED ELAPSED
TIME

rrrrY Y [YTY Y Ty Y Yy YT Yy Y Y Y
T22 GET (SERIAL) 200 4385
T23 FILE(READ) 200 3Ls51
T2L PUT 200 514y
T25 FILE(WRITE) 200 2717

LA AL RS AR s R AR A R a2 s 22 2 2 s 2 22 2 X222 X 222822 22222 X22Y)

Paper 3043 11
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

SUMMARY

The seven techniques outlined aboved, then, are presented in order to
help programmers who are developing TRANSACT applications to better
understand TRANSACT’s methodology in certain operations. The intent was
to present these ideas in a way that would allow programmers to weigh
alternatives available to them in order to maximize their application’s
performance. It should be noted that the list is by no means exhaustive
in presenting methods of improving performance. Additional
considerations are outlined in Appendix E of the TRANSACT Reference
Manual. In addition to the techniques presented here, as well as those
outlined in Appendix E, the programmer should keep in mind the ordinary
techniques in program design, in attempting to design an optimal
application.

Paper 3043 12 WASHINGTON, D. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

APPENDIX A

The test programs presented in this paper were all c¢reated by the
author. The attempt was made to make the programs as simple as possible
while still allowing the point to be made, and may thus often seem very
trivial at first glance. That was the intention. Attempts were made
programmatically to insure a "¢lean” compare between multiple test
programs (ie. beginning many programs with an initial disc access to
insure initial disc head placement etc.). Most of these techniques are
discussed directly in the paper where appropriate.

The methodology selected in determining performance implications was one
of at least two methods which could have been used. The reader will
note that most programs initially place an item labelled TIMESTART into
the LIST register, initializing it to PROCTIME. The code which follows,
then, is the code that is being compared between programs, followed
immediately by the placement of a second item, labelled TIMESTOP, into
the LIST register, again initializing it to PROCTIME. The difference
between TIMESTART and TIMESTOP, then, is the amount of CPU milliseconds
within the loop, and is reported as ELAPTIME. This ELAPTIME value,
then, can be used for comparison purposes.

A second method of determining performance ramifications would be to use
TRANSACT's test mode U4 to determine actual instruction timings. This
method seems to result in the same performance guidelines being agreed
upon, while the testing procedure is much more laborious, hence the
first method was selected for use with this paper.

The test programs were run on a dedicated HP3000 Series U8 with disc
caching enabled.

P
aper 30L3 13 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

APPENDIX B

DATA BASE SCHEMA FOR TESTB

BEGIN DATA BASE TESTB;

PASSWORDS :
ITEMS:
El, X2 $
E2, X2 3
E3, X2 H
Eh, AT s
ES, 2 3
E6, 28 3
ET, I1 H
K1, X2 H
SETS:
NAME: MASTERSET, MANUAL 3
ENTRY: K1 {1);
CAPACITY: 503
NAME: DETAILSET, DETAIL $
ENTRY: K1 { MASTERSET Y,
El,
E2,
E3,
Eb,
E5,
E6,
E7;
CAPACITY: 150;
END.
Paper 3043 1y

INTEREX85

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 86

COMPILED LISTING AND RUN RESULTS OF PROGRAM T1

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM T1,BASE=TESTB(";",1);

2.000 0000 << LOOP THROUGH DETAIL WITH ALL ITEMS RETRIEVED »>
3.000 0000 DISPLAY "ALL ITEMS BEING RETRIEVED";

7.000 0002 LIST K1:E2:E3:E4:ES:E6:ELAPTIME;

9.000 0012

10.000 0012 LIST TIMESTART,PROCTIME;

11.000 0015 FIND(SERIAL) DETAILSET,LIST=(K1,E2,E3,EL,E5,E6),

PERFORM=A;

12.000 0026 LIST TIMESTOP,PROCTIME;

13.000 0029

14.000 0029 LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
15.000 0031 DISPLAY ELAPTIME;

16.000 0033 END;
17.000 003k

18.000 0034 A:

19.000 0034 GET(SERIAL) DETAILSET,LIST=(E2,E3);

20.000 0040 RETURN;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03
ELAPSED TIME=00:00:0L4

PRARRANRARRRRANARAAARRARARRRARRRRRRRARRRAARA AR RARARAARRRARRORRAAARD
TRANSACT /3000 HP32247A.01.07 - (C) Hewlett-Packard Co. 1983

SYSTEM NAME>
ALL ITEMS BEING RETRIEVED

ELAPSED TIME
3030

EXIT/RESTART(E/R)?>
ALL ITEMS BEING RETRIEVED

ELAPSED TIME
2999

EXIT/RESTART(E/R)?>

304
Paper 3043 15 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

COMPILED LISTING AND RUN RESULTS OF PROGRAM T2

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM T2,BASE=TESTB(";",1);
2.000 0000 << LOOP THROUGH DETAIL RETRIEVING ONE ITEM »>>
3.000 0000 DISPLAY "ONE ITEM RETRIEVED";
7.000 0002 LIST K1:E2:E3:E4:E5:E6:ELAPTIME;
9.000 0012
10.000 0012 LIST TIMESTART,PROCTIME;
11.000 0015 FIND(SERIAL) DETAILSET,LIST=(E2),PERFORM=A;
12.000 0019 LIST TIMESTOP,PROCTIME;
13.000 0022
14,000 0022 LET (ELAPTIME)=(TIMESTOP)- (TIMESTART)
15.000 0024 DISPLAY (ELAPTIME);
16.000 0026 END;
17.000 0027
18.000 0027 A:
19.000 0027 GET(SERIAL) DETAILSET,LIST=(E2,E3);
20.000 0033 RETURN;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03
ELAPSED TIME=00:00:03

Y L Ly Y Yy Ty Yy Ty Y
TRANSACT /3000 HP3224TA.01.07 - {C) Hewlett-Packard Co. 1983

SYSTEM NAME>
ONE ITEM RETRIEVED

ELAPSED TIME
2570

EXIT/RESTART(E/R)?>
ONE ITEM RETRIEVED

ELAPSED TIME
2516

EXIT/RESTART (E/R)?>

Paper 30u43 16 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

COMPILED LISTING AND RUN RESULTS OF PROGRAM T3

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM T3,BASE=TESTB(";",1);

3.000 0000 DISPLAY "ITEM LIST BEING RETRIEVED';
7.000 0002 LIST K1:E2:E3:E4:E5:E6:ELAPTIME;

9.000 0012

10.000 0012 LIST TIMESTART,PROCTIME;

11.000 0015 FIND(SERIAL) DETAILSET, LIST=(Kl1,E2,E3,E4,ES,E6),
11.500 PERFORM=A;

12.000 0026 LIST TIMESTOP,PROCTIME;

13.000 0029

14.000 0029 LET (ELAPTIME)={TIMESTOP)- (TIMESTART);
15.000 0031 DISPLAY ELAPTIME;
16.000 0033 END;

17.000 003k A:

18.000 003k GET(SERIAL) DETAILSET,LIST=(E2);
19.000 0037 RETURN;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03
ELAPSED TIME=00:00:0h

L T Yy Y T T T T Y YT Y Y Y'Y
TRANSACT /3000 HP3224TA.01.07 - (C) Hewlett-Packard Co. 1983

SYSTEM NAME>
ITEM LIST BEING RETRIEVED

ELAPSED TIME
2894

EXIT/RESTART(E/R)?>
ITEM LIST BEING RETRIEVED

ELAPSED TIME
2863

EXIT/RESTART(E/R)?>

ok
Paper 3043 17 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

COMPILED LISTING AND RUN RESULTS OF PROGRAM Th

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM Th,BASE=TESTB(":",1);
3.000 0000 DISPLAY "IMPLIED ITEM RANGE SPECIFIED";
7.000 0002 LIST K1:E2:E3:E4:ES:E6:ELAPTIME;
9.000 0012
10.000 0012 LIST TIMESTART,PROCTIME;
11.000 0015 FIND(SERIAL) DETAILSET,LIST={:E6),PERFORM=A;
12.000 0019 LIST TIMESTOP,PROCTIME;
13.000 0022
14.000 0022 LET (ELAPTIME)=(TIMESTOP)- (TIMESTART);
15.000 002X DISPLAY ELAPTIME;
16.000 0026 END;
17.000 0027 A:
18.000 0027 GET(SERIAL) DETAILSET,LIST=(E2);
19.000 0030 RETURN;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03
ELAPSED TIME=00:00:07

ARARARRNARARARAAARAARAARARARARRAARAARAARHARAARAARAARARAARIRRRAARANAN
TRANSACT/3000 HP32247A.01.07 - {C) Hewlett-Packard Co. 1983

SYSTEM NAME>
IMPLIED ITEM RANGE SPECIFIED

ELAPSED TIME
2691

EXIT/RESTART(E/R)?>
IMPLIED ITEM RANGE SPECIFIED

ELAPSED TIME
2659

EXIT/RESTART(E/R)?>

Paper 3043 18 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 &

COMPILED LISTING AND RUN RESULTS OF PROGRAM T5

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000
2.000
3.000
4. 000
5.000
6.000
7.000
8.000
9.000
10.000
11.000
12.000
13.000
14.000
15.000
16.000
17.000
18.000
19.000
20.000
21.000
22.000
23.000
24,000
25.000
26.000
27.000
28.000
29.000
30.000
31.000
32.000
33.000
34.000
35,000
36.000
37.000
38.000
39.000
40.000
41.000
42.000
43.000
44,000
45.000
46.000

Paper 3043

0000
0002
0002
0003
oook
0005
0006
0007
0008
0009
0010
0011
0012
0013
001k
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
ooko
ookl
ook2
00k3
ooky

SYSTEM TS,DATA=2048,3003
DISPLAY “PROG TO ACCESS ITEM OK TOP OF LIST REG™;
DEFINE(ITEM) COUNT I(L);
LIST E2:

ELAPTIME:

El:

El:

El:

El:

Ei:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El:

El: N

19

rt

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

47.000 0045 El:
48.000 00L6 El:
%9.000 00L7 El:
50.000 0048 El:
51.000 0049 El:
§2.000 0050 El:
53.000 0051 El:
54.000 0052 El:
55.000 0053 El:
56.000 005k El:
57.000 0055 El:
58.000 0056 El:
59.000 0057 El:
60.000 0058 El:
61.000 0059 El:
62.000 0060 El:
63.000 0061 El:
64.000 0062 El:
65.000 0063 El:
66.000 0064 El:
67.000 0065 El:
68.000 0066 El:
69.000 0067 El:
70.000 0068 El:
71.000 0069 El:
72.000 0070 El:
73.000 0071 El:
74.000 0072 El:
75.000 0073 El:
76.000 0074 El:
77.000 0075 El:
78.000 0076 El:
79.000 0077 El:
80.000 0078 El:
81.000 0079 El:
82.000 0080 El:
83.000 0081 El:
84,000 0082 El:
85.000 0083 El:
86.000 0084 El:
87.000 0085 El:
88.000 0086 El:
89.000 0087 El:
90.000 0088 El:
91.000 0089 El:
92.000 0090 El:
93.000 0091 El:
94.000 0092 El:
95.000 0093 El:
96.000 0094 El:
97.000 0095 El:
Paper 3043 20

INTEREXES

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

98.000

99.000
100.000
101.000
102.000
103.000
104.000
105.000
106.000
107.000

108.000
109.000
110.000
111.000
112.000
113.000
11L4.000
115.000
116.000
117.000
118.000
119.000
120.000
121.000
122.000
123.000
124.000
125.000
126.000
127.000
128.000
129.000
130.000
131.000
132.000
133.000
134.000
135.000
136.000
137.000
138.000
139.000
140.000
141.000
142.000

CODE FILE

0096
0097
0098
0099
0100
0101
0102
0103
0104
0105

0106
0107
0108
0109
0110
0111
0112
0113
011k
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0130
0135
0135
0135
0137
0140
0143
01k6
0148
0150

PR

El:
El:
El:
El:
El:
El:
El:
El:
El:
El:

El:
El:
El:
El:
El:
El1l:
El:
El:
El:
El;

LIST COUNT,INIT:TIMESTART,PROCTIME;

REPEAT

INTEREX8S

MOVE (E1)="AB"; << ACCESS ITEM AT TOP OF LIST »>>

LET (COUNT)=(COUNT)+1;

UNTIL (COUNT)=200;

LIST TIMESTOP,PROCTIME;

LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPTIME;

END;

STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:07
ELAPSED TIME=00:00:09

Paper 3043

2l

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

ARARNRRARARARARARARNAARRARRARARARARARAREARAARARAARARARRAAARARARARARANARASR

TRANSACT/3000 HP3224T7A.01.07 - (C) Hemlett-Packard Co. 1983

SYSTEM NAME>
PROG TO ACCESS ITEM ON TOP OF LIST REG

ELAPSED TIME
1490

EXIT/RESTART (E/R) 7>
PROG TO ACCESS ITEM ON TOP OF LIST REG

ELAPSED TIME
1kgo

EXIT/RESTART(E/R)?>

Paper 3043 22 WASHINGTON, b. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

COMPILED LISTING AND RUN RESULTS OF PROGRAM T6

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000
2.000
3.000
4. 000
5.000
6.000
7.000
8.000
9.000
10.000
11.000
12.000
13.000
14.000
15.000
16.000
17.000
18.000
19.000
20.000
21.000
22.000
23.000
24.000
25.000
26.000
27.000
28.000
29.000
30.000
31.000
32.000
33.000
34.000
35.000
36.000
37.000
38.000
39.000
40.000
41.000
42.000
43.000
L4, 000
45.000

Paper 3043

INTEREX 85

SYSTEM Té,DATA=2048,300;
0000 DISPLAY "PROG TO ACCESS ITEM ON BOTTOM OF LIST REG";
0002 DEFINE(ITEM) COUNT I(L4);
0002 LIST E2:
0003 ELAPTIME:
0004 El:
0005 El:
0006 El:
0007 El:
0008 El:
0009 El:
0010 El:
0011 El:
0012 El:
0013 El:
0014 El:
0015 El:
0016 El:
0017 El:
0018 El:
0019 El:
0020 El:
0021 El:
0022 El:
0023 El:
0024 El:
0025 El:
0026 El:
0027 El:
0028 El:
0029 El:
0030 El:
0031 El:
0032 El:
0033 El:
003l El:
0035 El:
0036 El:
0037 El:
0038 El:
0039 El:
0040 El:
ookl El:
o042 El:
0043 El:

23

WASHINGTON, D. C.

46.

W7

L8.
Lg.
50.
51.
52.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

000 0044 El:
.000 00LS El:
000 0046 El:
000 0047 El:
000 0048 El:
000 0049 El:
000 0050 El:
.000 0051 El:
.000 0052 El:
.000 0053 El:
.000 0054 El:
.000 0055 El:
.000 0056 El:
.000 0057 El:
.000 0058 El:
.000 0059 El:
.000 0060 El:
.000 0061 El:
.000 0062 El:
.000 0063 El:
.000 0064 El:
.000 0065 El:
.000 0066 El:
.000 0067 El:
.000 0068 El:
.000 0069 El:
.000 0070 El:
.000 0071 El:
.000 0072 El:
.000 0073 El:
.000 00Tk El:
.000 0075 El:
.000 0076 El:
.000 0077 El:
.000 0078 El:
.000 0079 El:
.000 0080 El:
.000 0081 El:
.000 0082 El:
.000 0083 El:
.000 0084 El:
.000 0085 El:
.000 0086 El:
.000 0087 El:
.000 0088 El:
.000 0089 El:
.000 0090 E1l:
.000 0091 El:
.000 0092 El:
.000 0093 E1l:
.000 0094 El:
3043 2y

INTEREX 8%

WASHINGTON, D. C.

97
98
99

100.
101.
102.
103.
104.
105.
106.
107.

108.
109.
110.
111.
112.
113.
114,
115.
116.
117.
118.
119.
120.
121.
122.
123.
124,
125.
126.
127.
128.
129.
130.
131.
132.
133.
134,
135.
136.
137.
138.
139.
140.
141.
142,

BALTIMORE WASHINGTON REGIONAL USERS GROUP

.000
.000
.000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

CODE FILE

Paper 3043

0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105

0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
o127
0128
0129
0130
0130
0135
0135
00135 1
0137 1
0140 1
0143
0146
0148
0150

El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:

El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El:
El;

LIST COUNT,INIT:TIMESTART,PROCTIME;

REPEAT

INTEREX8S

MOVE (E2)="AB"; <<ACCESS ITEM AT BOTTOM OF LIST »>>

LET (COUNT)=(COUNT)+1;

UNTIL (COUNT)=200;

LIST TIMESTOP,PROCTIME;

LET (ELAPTIME)=(TIMESTOP)- (TIMESTART);
DISPLAY ELAPTIME;

END;

STATUS: REPLACED

25

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:07
ELAPSED TIME=00:00:08

(2 XTSI ISR S22 22S2 222222222222 L L 2
TRANSACT /3000 HP32247A.01.07 ~ (C) Hewlett-Packard Co. 1983

SYSTEM NAME>
PROG TO ACCESS ITEM ON BOTTOM OF LIST REG

ELAPSED TIME
1856

EXIT/RESTART(E/R)?>
PROG TO ACCESS ITEM ON BOTTOM OF LIST REG

ELAPSED TIME
1827

EXIT/RESTART(E/R)?>

Paper 3043 26 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8S

COMPILED LISTING AND RUN RESULTS OF PROGRAM T7

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

.000
000
.000
100
.000
.000
.000
.000
.100
.000
.000
10.000
10.100
11.000
12.000
13.000
14.000
15.000
16.000

WO N VMEWWwN P

SYSTEM TT,BASE=TESTB(";",1),WORK=15;

0000 DEFINE (ITEM) TIMESTART I(9):

0000 TIMESTOP I(9):

0000 COUNT I(4):

0000 ELAPTIME 1I(9);

0000 LIST K1:E2:E3:E4:ES5:E6:ELAPTIME : COUNT;
0008 MOVE (E2)="AA";

0010 LET (COUNT)=1;

0012 LIST TIMESTART,PROCTIME;

0015 WHILE (COUNT) <250

0015 DO

0015 1 SET(MATCH) LIST(E2);

0020 1 RESET(OPTION) MATCH;

0021 1 LET (COUNT)=(COUNT)+1;

0024 1 DOEND;

0026 LIST TIMESTOP,PROCTIME;

0029 LET (ELAPTIME)=(TIMESTOP)- (TIMESTART),
0031 DISPLAY ELAPTIME;

0033 END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03
ELAPSED TIME=00:00:04

LA 2222 s R s s il e sl el iz il yy sy

TRANSACT /3000 HP32247A.01.07 - (C) Hewlett-Packard Co. 1983

SYSTEM NAME>

ELAPTIME:
2185

EXIT/RESTART(E/R)?>

ELAPTIME:
2181

EXIT/RESTART(E/R)?>

Paper 3043

27
WASHINGTON, D. C.

BALTIMO

RE WASHINGTON REGIONAL USERS GROUP INTEREX86

COMPILED LISTING AND RUN RESULTS OF PROGRAM T8

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM T8,BASE=TESTB(";",1),WORK=255;
2.000 0000 DEFINE(ITEM) TIMESTART 1(9):

3.000 0000 TIMESTOP 1(9):

3.100 0000 COUNT I(h):

4.000 0000 ELAPTIME 1(9);

5.000 0000 LIST K1:E2:E3:EY:E5:E6:ELAPTIME : COUNT;
£.000 0008 MOVE (E2)="AA":

7.000 0010 LET (COUNT)=1;

7.100 0012 LIST TIMESTART,PROCTIME;

8.000 0015 WHILE (COUNT) <250

9.000 0015 DO
10.000 0015 1 SET(MATCH) LIST(E2);
10.100 0020 1 RESET (OPTION) MATCH;
11.000 0021 1 LET (COUNT)=(COUNT)+1;
12.000 0024 1 DOEND;

13.000 0026 LIST TIMESTOP,PROCTIME;

14,000 0029 LET (ELAPTIME)=(TIMESTOP) - (TIMESTART);
15.000 0031 DISPLAY ELAPTIME;

16.000 0033 END;

CODE FILE STATUS: REPLACED

0 COMPILATION

ERRORS

PROCESSOR TIME=00:00:03
ELAPSED TIME=00:00:05

BRAARBARRARRAR

TRANSACT /3000
SYSTEM NAME>

ELAPTIME:
2156

EXIT/RESTART(

ELAPTIME:
2151

EXIT/RESTART{

Paper 3043

RARRAARARRAARRARAARAARARARAARARARAARARARARARAARAARAARARAR

HP322L47A.01.07 - {C) Hewlett-Packard Co. 1983

E/R)?>

E/R)?>

28 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

COMPILED LISTING AND RUN RESULTS OF PROGRAM T9

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000

3.000

7.000

9.000
10.000
11.000
12.000
13.000
1k4.000
15.000
16.000
17.000
18.000
19.000

CODE FILE

0000
0002
0012
0012
0015
0020
0023
0023
0025
0027
0028
0028
0031

SYSTEM T9,BASE=TESTB{";",1);
DISPLAY "ALL ITEMS BEING RETRIEVED";
LIST K1:E2:E3:EL:E5:E6:ELAPTIME;

LIST TIMESTART,PROCTIME;
FIND(SERIAL) DETAILSET,LIST={K1:E6),PERFORM=A;
LIST TIMESTOP,PROCTIME;

LET (ELAPTIME)={TIMESTOP)-{TIMESTART);
DISPLAY ELAPTIME;

END;

A:
GET(SERIAL) DETAILSET,LIST={E2);
RETURN;

STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03
ELAPSED TIME=00:00:03

ARRARRRRRRA AR N ARARRRRRARRARARRARRRARRARRARRRRARARARARRRARRARARARARAARRAS

TRANSACT /3000 HP3224TA.01.07 - (C) Hewlett-Packard Co. 1983
SYSTEM NAME>
ALL ITEMS BEING RETRIEVED
ELAPSED TIME
2693
EXIT/RESTART({E/R)?>
ALL ITEMS BEING RETRIEVED
ELAPSED TIME
2665
EXIT/RESTART(E/R)?>
Paper 30L3 29

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

COMPILE LISTING AND RUN RESULTS OF PROGRAM T10

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

O O~ AW w =

.000
.000
.000
.100
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

CODE FILE

0000
0002
0002
0008
0011
0011
0013
0016
0019
0022
0023
0025
0027
0029

SYSTEM T10;

DISPLAY "INTEGER ARITHMETIC":

DEFINE (ITEM) COUNT I(9):I1 I(5,0,2):I2 1(5,0,2);
LIST COUNT,INIT:I1,INIT:I2,INIT;

LIST TIMESTART,PROCTIME;

REPEAT

LET (I1)=(I1)+(I2)s

LET (COUNT)=(COUNT)+1}

UNTIL (COUNT)=100;

LIST TIMESTOP,PROCTIME;

LIST ELAPTIME;

LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPTIME;

SET (COMMAND) INITIALIZE;

END;

STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03
ELAPSED TIME=00:00:03

RERRRRRRRRRERERRRRRRBRRRBRRBERRRRBRBRERRRBERRBRRBRRBERRERRRRRRBRERRRRRR NN

TRANSACT /3000

SYSTEM NAME>

INTEGER ARITHMETIC

ELAPSED TIME

1446

Paper 3043

HP32247A.01.09 - (C) Hewlett-Packard Co. 1983

30

WASHINGTON, D. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8%

COMPILE LISTING AND RUN RESULTS OF PROGRAM T11l

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.
2.
.000
3.
5.
.000

T.

8.

9.
10.
11.
12,
13.
1%,
15.

3

6

000
000

100
000

000
000
000
000
000
000
000
000
000

CODE FILE

SYSTEM T11;
0000 DISPLAY "DOUBLE WORD INTEGER ARITHMETIC";
0002 DEFINE(ITEM) COUNT I(9):I1 I(10,0,4):I2 I(10,0,4);
0002 LIST COUNT,INIT:I1,INIT:I2,INIT; .
0008 LIST TIMESTART,PROCTIME;
0011 REPEAT
0011 LET (I1)=(I1)+(I2);

0013 1 LET (COUNT)=(COUNT)+1;
0016 1 UNTIL (COUNT)=100;

0019 LIST TIMESTOP,PROCTIME;

0022 LIST ELAPTIME;

0023 LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
0025 DISPLAY ELAPTIME;

0027 SET(COMMAND) INITIALIZE;

0029 END;

STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03
ELAPSED TIME=00:00:03

t2 222 222222222122 22 222222222 2222222422222 2222222222222 232222222222 X

TRANSACT/3000 HP32247A.01.09 - {C) Hewlett-Packard Co. 1983

SYSTEM NAME>
DOUBLE WORD INTEGER ARITHMETIC

ELAPSED TIME

1446

Paper 3043

31
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 S

COMPILE

LISTING AND RUN RESULTS OF PROGRAM T12

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000

2.000 0000
3.000 0002
3.100 0002
5.000 0008
6.000 0011
7.000 0011
8.000 0013 1
9.000 0016 1
10.000 0019
11.000 0022
12.000 0023
13.000 0025
14.000 0027
15.000 0029

CODE FILE STATUS: RE
0 COMPILATION ERRORS

PROCESSOR TIME=00:00
ELAPSED TIME=00:00

FRARRRRARARARRARRRRAR
TRANSACT /3000 HP3

SYSTEM NAME»>
ZONED ARITHMETIC

ELAPSED TIME
2171

Paper 3043

SYSTEM T12;

DISPLAY "ZONED ARITHMETIC";
DEFINE(ITEM) COUNT I(9):I1 2(4,0,4):12 2{h,0,4);
LIST COUNT,INIT:I1,INIT:I2,INIT;

LIST TIMESTART,PROCTIME;

REPEAT

LET (I1)=(11)+(12);

LET (COUNT)=(COUNT)+1;

UNTIL (COUNT)=100;

LIST TIMESTOP,PROCTIME;

LIST ELAPTIME;

LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPTIME;

SET(COMMAND) INITIALIZE;

END;

PLACED

:03
:03

ARARARRRRARNARARARARTANAARNANNAARRARRAREAAARRARARAARRS

2247A.01.09 - (C) Hewlett-Packard Co. 1983

32

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

COMPILE LISTING AND RUN RESULTS OF PROGRAM T13

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM T13;

2.000 0000 DISPLAY "ZONED ARITHMETIC";

3.000 0002 DEFINE(ITEM) COUNT I(9):I1 2(8,0,8):11 2(8,0,8};
3.100 0002 LIST COUNT,INIT:I1,INIT:12,INIT;

5.000 0008 LIST TIMESTART,PROCTIME;

6.000 0011 REPEAT

7.000 0011 LET (I1)=(I1)+(12);

8.000 0013 1 LET (COUNT)=(COUNT)+1l;
9.000 0016 1 UNTIL (COUNT)=100;

10.000 0019 LIST TIMESTOP,PROCTIME;

11.000 0022 LIST ELAPTIME;

12.000 0023 LET (ELAPTIME)=(TIMESTOP)-{TIMESTART);
13.000 0025 DISPLAY ELAPTIME;

14.000 0027 SET(COMMAND) INITIALIZE;

15.000 0029 END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:04
ELAPSED TIME=00:00:03

RARRRARRRARRARRARAARARARRARRARARRARARAARAARARAAARAARNRAARAARNRNAAARARARNARAARNAAARNRNNNANN
TRANSACT/3000 HP32247A.01.09 - (C) Hewlett-Packard Co. 1983

SYSTEM NAME>
ZONED ARITHMETIC

ELAPSED TIME
2187

Paper 3043 33 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

COMPILE LISTING AND RUN RESULTS OF PROGRAM T1lh

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000

2.000 0000
3.000 0002
3.100 0002
5.000 0008
6.000 0011
7.000 0011
8.000 0013 1
9.000 0016 1
10.000 0019
11.000 0022
12.000 0023
13.000 0025
14.000 0027
15.000 0029

SYSTEM T1lu;

DISPLAY "PACKED ARITHMETIC";

DEFINE (ITEM) COUNT I(9):I1 P(7,0,4):12 P(7,0,4);
LIST COUNT,INIT:I1,INIT:I2,INIT;

LIST TIMESTART,PROCTIME;

REPEAT

LET (I1)=(I1)+(I2)%

LET (COUNT)=(COUNT)+1;

UNTIL (COUNT)=100;

LIST TIMESTOP,PROCTIME;

LIST ELAPTIME;

LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPTIME;

SET (COMMAND) INITIALIZE;

END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:04
ELAPSED TIME=00:00:03

BRAERRRBRBRRARRRERRRRERRRBRRRRBRRRBRRRARRRRRRRRARRBRRRRBRRRRRRRRRI RN RN

TRANSACT/3000

SYSTEM NAME>
PACKED ARITHMETIC

ELAPSED TIME
1492

Paper 3043

HP322474.01.09 - (C) Hewlett-Packard Co. 1983

34

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

COMPILE LISTING AND RUN RESULTS OF PROGRAM T1%

COMPILING WITH OPTIONS: L1ST,CODE,DICT,ERRS

1.000 SYSTEM T15;

2.000 0000 DISPLAY “REAL ARITHMETIC";

3.000 0002 DEFINE(ITEM) COUNT I(9):I1 (6,0,4):12 R{6,0,4);
3.100 0002 LIST COUNT,INIT:I1,INIT:I2,INIT;

5.000 0008 LIST TIMESTART,PROCTIME;

6.000 0011 REPEAT

7.000 0011 LET (I1)=(11)+{12);

8.000 0013 1 LET (COUNT)=(COUNT)+1;

9.000 0016 1 UNTIL (COUNT)=100;
10.000 0019 LIST TIMESTOP,PROCTIME;

11.000 0022 LIST ELAPTIME;
12.000 0023 LET (ELAPTIME)=(TIMESTOP)- (TIMESTART);
13.000 0025 DISPLAY ELAPTIME;

14.000 0027 SET(COMMAND) INITIALIZE;

15.000 0029 END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:0L4
ELAPSED TIME=00:00:03

RARRRARRRRRAARARRRRARRARARARRARARARRRRRRARAARRARRRRRRARRRARRARARRARARRARNAANS
TRANSACT/3000 HP32247A.01.09 - (C) Hewlett-Packard Co. 1983

SYSTEM NAME>
REAL ARITHMETIC

ELAPSED TIME
1446

Paper 30L3 35 WASHINGTON, D. ¢

BALTIMORE WA SHINGTON REGIONAL USERS GROUP INTEREX85

COMPILE LISTING AND RUN RESULTS OF PROGRAM T16

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM T16;

2.000 0000 DISPLAY "INTEGER AND REAL ARITHMETIC";
3.000 0002 DEFINE (ITEM) COUNT I(9):I1 (5,0,2):12 R(6,0,4);
3.100 0002 LIST COUNT,INIT:I1,INIT:I2,INIT;

5.000 0008 LIST TIMESTART,PROCTIME;

6.000 0011 REPEAT

7.000 0011 LET (I1)=(I1)+(I2);

8.000 0013 1 LET (COUNT)=(COUNT)+1;

9.000 0016 1 UNTIL (COUNT)=100;
10.000 0019 LIST TIMESTOP,PROCTIME;
11.000 0022 LIST ELAPTIME;
12.000 0023 LET (ELAPTIME)=(TIMESTOP)-(TIMESTART) ;
13.000 0025 DISPLAY ELAPTIME;
14.000 0027 SET(COMMAND) INITIALIZE;

15.000 0029 END;
CODE FILE STATUS: REPLACED
0 COMPILATION ERRORS

PROCESSOR TIME=00:00:04
ELAPSED TIME=00:00:04

TRTII I DI I DTS IS I AT I T TSI 0600060606 060606 006 06 06 06 06 06 0600 00 0606 08 0600 16 05.95.90 06 06 08 090 9046 90 30 0 0 6 26 90 4 4
TRANSACT/3000 HP32247A.01.09 - {(C) Hewlett-Packard Co. 1983

SYSTEM NAME>
INTEGER AND REAL ARITHMETIC

ELAPSED TIME
2332

Paper 3043 36 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

COMPILE LISTING AND RUN RESULTS OF PROGRAM T17

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM T17;
2.000 0000 DISPLAY "DIFFERENT SCALE INTEGER DECIMAL
ARITHMETIC" ;

3.000 0002 DEFINE(ITEM) COUNT I(9):I1 I(5,0,2):I2 I(7,2,h4);
3.100 0002 LIST COUNT,INIT:I1,INIT:I2,INIT;

5.000 0008 LIST TIMESTART,PROCTIME;

6.000 0011 REPEAT

7.000 0011 LET (I1)=(I1)+(I2);

8.000 0013 1 LET (COUNT)={COUNT)+1;

9.000 0016 1 UNTIL (COUNT)=100;
10.000 0019 LIST TIMESTOP,PROCTIME;
11.000 0022 LIST ELAPTIME;
12.000 0023 LET (ELAPTIME)=(TIMESTOP)- (TIMESTART);
13.000 0025 DISPLAY ELAPTIME;
1%.000 0027 SET(COMMAND) INITIALIZE;
15.000 0029 END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:04
ELAPSED TIME=00:00:05

FRBRARN NIRRT II IR I 20 T0 230 202 903200636 20 00 90 36 2 90 3096 20 90 96 36 30 3 90 096 3 06 90 0 9 20 94 6 0 0

TRANSACT /3000 HP32247A.01.09 ~ (C) Hewlett-Packard Co. 1983

SYSTEM NAME>

DIFFERENT SCALE INTEGER DECIMAL ARITHMETIC
ELAPSED TIME

245Y
Paper 3043 37

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

INTEREX 85

COMPILE LISTING AND RUN RESULTS OF PROGRAM T18

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 SYSTEM T18;

2.000 0000 DISPLAY "DIFFERENT SCALE PACKED ARITHMETIC™;
3.000 0002 DEFINE(ITEM) COUNT I(9):I1 P(7,0,4):I2 P(T7,2,4);
3.100 0002 LIST COUNT,INIT:I1,INIT:I2,INIT;

5.000 0008 LIST TIMESTART,PROCTIME;

6.000 0011 REPEAT

7.000 0011 LET (I1)=(I1)+(I2);

8.000 0013 1 LET (COUNT)=(COUNT)+1;

9.000 0016 1 UNTIL (COUNT)=100;
10.000 0019 LIST TIMESTOP,PROCTIME;

11.000 0022 LIST ELAPTIME;
12.000 0023 LET (ELAPTIME)={TIMESTOP)-(TIMESTART);
13.000 0025 DISPLAY ELAPTIME;

14.000 0027 SET (COMMAND) INITIALIZE;

15.000 0029 END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:04
ELAPSED TIME=00:00:03

[2322223222222 22 2222 2222222222222 222222222222 2222 222222222222}

TRANSACT /3000 HP32247A.01.09 - {C) Hewlett-Packard Co. 1983

SYSTEM NAME>

DIFFERENT SCALE PACKED ARITHMETIC
ELAPSED TIME ;

1511

Paper 3043 38

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8$

COMPILE LISTING AND RUN RESULTS OF PROGRAM T20

COMPILING WITH OPTIONS: L1ST,CODE,DICT,ERRS

1.000 SYSTEM T20;

1.100 0000 << PROGRAM TO COMPARE MOVE AND LET STATEMENTS »»
2.000 0000 DEFINE(ITEM) 11 I(9):I2 I(9);

3.000 0000 LIST I1,INIT:I2,INIT:ELAPTIME,INIT:COUNT,INIT;
4.000 0008 LIST TIMESTART,PROCTIME;

4.100 0011 REPEAT

5.000 0011 MOVE (I2)={I1);

5.010 0013 1 LET {COUNT)={COUNT)+1;

5.020 0016 1 UNTIL (COUNT)=100:

5.100 0019 LIST TIMESTOP,PROCTIME;

5.200 0022 LET (ELAPTIME)=(TIMESTOP)- {TIMESTART);

5.300 0024 DISPLAY ELAPTIME;

7.000 0026 END;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03
ELAPSED TIME=00:00:0k4

‘.*******"***;***’***’**’**’********.*****’****.********.***..***.***"
TRANSACT/3000 HP32247A.01.09 - (C) Hewlett-Packard Co. 1983
SYSTEM KAME>

ELAPSED TIME
759

Paper 3043 39

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILE LISTING AND RUN RESULTS OF PROGRAM T21

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

.300 0024 DISPLAY ELAPTIME;
.000 0026 END;

1.000 SYSTEM T21;

1.100 0000 << PROGRAM TO COMPARE MOVE AND LET STATEMENTS »>>
2.000 0000 DEFINE (ITEM) I1 I(9):I2 I(9);

3.000 0000 LIST I1,INIT:I2,INIT:ELAPTIME,INIT:COUNT,INIT;
4.000 0008 LIST TIMESTART,PROCTIME;

4.100 0011 REPEAT

5.000 0011 LET (I2)=(I1);

5.010 0013 1 LET (COUNT)=(COUNT)+1;

5.020 0016 1 UNTIL (COUNT)=100;

5.100 0019 LIST TIMESTOP,PROCTIME;

5.200 0022 LET (ELAPTIME)=(TIMESTOP)- (TIMESTART);

5

7

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03
ELAPSED TIME=00:00:03

P T T L L T T T T YT T Ty T T TP T YT Y T TP T VT YT R TN YN
TRANSACT /3000 HP322M7A.01.09 - {C) Hewlett-Packard Co. 1983
SYSTEM NAME>

ELAPSED TIME
800

EXIT/RESTART(E/R) 7>

Paper 3043 Lo WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROQUP INTEREX 8%

COMPILED LISTING AND RUN RESULTS OF T22

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000 system T22,file=MPEFILE(READ(OLD));
2.000 0000 << PROGRAM TO TRAVERSE THROUGH MPE FILE
WITH DATA MGMT VERB

3.000 0000

3.100 0000 DEFINE(ITEM) COUNT I(9,0,4);

3.200 0000 LIST COUNT,INIT;

4.000 0002 LIST RECORD,INIT:TIMESTART,PROCTIME;
5.000 0007 WHILE (COUNT)<200

6.000 0007 DO

7.000 0007 1 GET(SERIAL) MPEFILE,LIST=(RECORD),STATUS,

NOMATCH;

8.000 0013 1 LET (COUNT)=(COUNT)+1;

9.000 0016 1 DOEND;
10.000 0018 LIST TIMESTOP,PROCTIME:ELAPTIME;
11.000 0022 LET (ELAPTIME)=(TIMESTOP)- (TIMESTART);
12.000 002k DISPLAY ELAPTIME;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03
ELAPSED TIME=00:00:03

E X222 2222222222222 22223222 XXX 2222222 2 YRR YRR A LY YR Y)
TRANSACT/3000 HP322U47A.02.02 ~ (C) Hewlett-Packard Co. 1984
SYSTEM NAME>

ELAPSED TIME
L615

EXIT/RESTART(E/R)?>

Paper 3043 41
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

COMPILED LISTING AND RUN RESULTS OF PROGRAM T23

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000
2.000

3.000
3.100
3.200
4.000
5.000
6.000
7.000
8.000
9.000
10.000
11.000
12.000

0000

0000
0000
0000
0002
0007
0007
0007
001k
0017
0019
0023
0025

1
i
1

SYSTEM T23,file=MPEFILE(READ(OLD));
<< PROGRAM TO TRAVERSE THROUGH MPE FILE
WITH FILE VERBS>>

DEFINE(ITEM) COUNT I{9,0,4);
LIST COUNT,INIT;
LIST RECORD, INIT:TIMESTART,PROCTIME;
WHILE (COUNT)<200
DO
FILE(READ) MPEFILE,LIST=({RECORD);
LET (COUNT)={COUNT)+1;
DOEND;
LIST TIMESTOP,PROCTIME:ELAPTIME;
LET (ELAPTIME)=(TIMESTOP)- (TIMESTART);
DISPLAY ELAPTIME;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03
ELAPSED TIME=00:00:03

RRARRARAARARNAAAARRARRAAARAAAAAARARRARARAAAAARAARARARARARAARARARAAAR

TRANSACT/300
SYSTEM NAME>

ELAPSED TIME
3715

EXIT/RESTART(E/R)?>

Paper 3043

0

HP32247A.02.02 - (C) Hewlett-Packard Co. 198k

42

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

COMPILED LISTING AND RUN RESULTS OF PROGRAM T2k

COMPILING WITH OPTIONS: LIST,CODE,DICT,ERRS

1.000
.000

N

.000
.100
.200
.000
.000
.000
.000
.000
.000
10.000
11.000
12.000

W oo swww

0000

0000
0000
0000
0002
0007
0007
0007
0013
0016
0018
0022
0024

(e

SYSTEM T2u,file=MPEFILE(R/W(OLD));
<< PROGRAM TO PUT INTO MPE FILE WITH DATA
MGMT VERBS>>

DEFINE(ITEM) COUNT 1{9,0,4);
LIST COUNT,INIT;
LIST RECORD,INIT:TIMESTART,PROCTIME ;
WHILE (COUNT)<200
DO
PUT MPEFILE,LIST=(RECORD);
LET (COUNT)=(COUNT)+1;
DOEND;
LIST TIMESTOP,PROCTIME:ELAPTIME;
LET (ELAPTIME)=(TIMESTOP)- (TIMESTART);
DISPLAY ELAPTIME;

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:03
ELAPSED TIME=00:00:03

RARARARARRARRARRARARRARARRARARARARARAAARRAARARARRAARAARARRARAARRRARARRRS

TRANSACT /300
SYSTEM NAME>

ELAPSED TIME
5139

EXIT/RESTART(E/R)?>

Paper 30u3

0

HP32247A.02.02 - (C) Hewlett-Packard Co. 1984

43

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

COMPILING

WOV Fwww =

12

.000
.000
.000
.100
.200
.000
.000
.000
.000
.000
.000
10.
11.
.000

000
000

CODE FILE

COMPILED LISTING AND RUN RESULTS OF PROGRAM T25

WITH OPTIONS: LIST,CODE,DICT,ERRS

0000
0000
0000
0000
0002
0007
0007
0007
0014
0017
0019
0023
0025

SYSTEM T25,file=MPEFILE(R/W(OLD));
<< PROGRAM TO PUT INTO MPE FILE WITH FILE VERBS>>

DEFINE (ITEM) COUNT 1(9,0,4);
LIST COUNT,INIT;
LIST RECORD, INIT:TIMESTART,PROCTIME;
WHILE (COUNT)<200
DO
FILE(WRITE) MPEFILE,L1ST=(RECORD);
LET (COUNT)=(COUNT)+1;
DOEND;
LIST TIMESTOP,PROCTIME:ELAPTIME;
LET (ELAPTIME)=(TIMESTOP)-(TIMESTART);
DISPLAY ELAPTIME;

e

STATUS: REPLACED

0 COMPILATION ERRORS
PROCESSOR TIME=00:00:0k4
ELAPSED TIME=00:00:03

RERRRARRRBERRARARRRRERRBRRRRBBBRRARRRARRRRRRRARARRERERRRERRRRRRRRERN

TRANSACT/3000

SYSTEM NAME>

ELAPSED TIME

4220

HP3224TA.02.02 - (C) Hewlett-Packard Co. 198k

EXIT/RESTART(E/R)?>

Paper 3043

Ly

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 88

304Yh. Software Design: Building Flexibility

Victoria A. Shoemaker
Michell Humphrey
2029 Woodland Parkway
St. Louis, Missouri 63146

1. Introduction

Three years ago, 1 was reading through a scope and evaluation report
for a computer solution to the age old problem of tracking data through
the corporate maze and came to the ’solution’ statement which read
something 1like this, ‘It is apparent that this company needs a total
intergrated interactive system to track....’'. Wow! I was sure that I
wanted to get involved in that project. How c¢ould I pass up the
opportunity to get involved in a TOTAL INTERGRATED INTERACTIVE
computer solution? Well, fortunately or unfortunately, I did get involved
in this project. For those of you still in a haze of what the 'real’
problem and solution was, let me explain.

The company had a need to record and report finan¢ial data through five
different organizations. The data, once recorded, needed to be reported
differently for each organization, as well as reported in some consistent
format for company level reporting. Designing a system which would
satisfy all of the requirements would be difficult and expensive, if
not impossible.

In this paper, I would like to share some of the solutions that the project
team came up with and some solutions that I have thought of via that useful
design tool, hindsight.

I1. Problem Statement

A discussion of the real problems and the situations which molded the
requirements for the solutions may be helpful prior to getting into the
technical merits and implementations of the solutions.

o Client Organization

The client was organized along product and functional lines. Within
each functional area there were team$s assigned to handling the needs of
a particular product line. Budgeting, recording and reporting were done on
both the functional and product level.

0 Basice Reporting Needs

The client needed to provide summary reports for the entire company on

both the product level and organizational level. Therefore, it was
imperative that all organization collect and report a core of information
to make this task feasible. In addition, each organization need to
report summary information on the different projects for the

management to evaluate the success or failure of each project separately.

o System Interfaces

Paper 304l 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

The system needed to interface with a larger corporate financial system,
thus reporting the financial activities of this major aggregate. The
system that we were to interface had a fixed format and included many
pieces of information that were not actively used by the client.

0 Miscellaneous Headaches

The client, as a company, was a young and changing company. Their
management members changed frequently, as did their procedures. There
were many charismatic management members which provided the project with
a great deal of energy, not all of which was directed in the same
direction. All of +the needs of the charismatic management needed
to be met. To put it bluntly, not only did the system need to be able to
stand the test of time, but acts of gods and demi-gods. It was evident,
that if a successful system was possible at all, the key to its success
would be flexibility.

II1. Design Methodology

The project team was a little baffled as to where to start with this
system. All of our ’normal’ design methodology did not seem able to
cope with the need to record the needs of and design a system which
satified all of the needs of our client. It seemed to the project team
that we may be dealing with five systems, not one. The needs seemed, at
first, second and third glance, to be too different to try and
integrate into one system. The major design problem became how does one
intergrate five different coding methods, five different and
changing reporting needs, and still meet the overall reporting requirements
of integrate reporting on the company level, as well as be able
to interface with the corporate financial system.

We elected to proceed through requirements definition as though we were
collecting requirements for five different systems. This allowed us
the flexibility of listening to each of the organization’s needs
without the pressure of trying to force fit their needs into an
overall system definition. The results were fantastic. Each of the
organizations felt as though they were the driving force behind the
project and that we understood their needs the best. The ability to record
all of their needs as though they were the only needs, allowed the
client to organize their priorities prior to having to consolidate
the overall project priorities. When it did come time to eliminate
certain facets of their requirements, they had already gone through the
distillation process of what 1is important and necessary and what is
fantasy better left for another project. The consolidation process of
overall project requirements went fairly well because everyone knew what
they were willing to let go during the bargaining process and what they
were not willing to sacrafice.

During the requirements definition process, Jjust to give you a feel for
the magnitude of needs of +the different organizations, we collected
150 report definitions, 300 different data requirements, and 5 different
views of system flow. The reporting requirements were all different, yet
you could feel a commonality of purpose, but only at a general
level- nothing that would keep you from writing 150 reports. It was

Paper 3044 2
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

at this point that we started investigating tools that would allow us
to develop one system that would satisfy all of these different needs.

At the end of requirements definition, it became clear that we were

developing a core system that satisfied the common data
requirements, corporate interface and company-wide reporting needs. 1In
addition to the core system, we needed to devise some

customization techniques to satisfy the unique requirements of each
organization. A quick review of the requirements of each of the parts
of the system might be helpful. The core system needed to provide the
following:

o interface to the corporate system
o the ability to summarize, for the entire company, all
financial information from each of the organizations
0 satisfy the reporting requirements at the company level.
The customization features would have to fulfill the following
requirements:

o Data collection
- ability to collect organizational specific data
- ability to change coding structures as needs changed
o Data entry
- coding of data
- error messages
~ on-line help screens
0 Reporting
-~ ability to format and report their own customized data
and common system data
0 Training Needs
- ability to ’design’ their own training session with the
use of on-line training facilities
~ ability to have customized help screens during data entry
- ability to have customized error and informational
messages.

o General Design

Our overall approach of developing a core system with customization
facilities was presented to the user and accepted. We then
proceeded with the aurdous task of designing the major components of the
system; namely, data collection, reporting needs, and training needs
of the core system and customized features.

Data Collection

We used the data required by the corporate system and common data between
the organizations as the data we would collect in our main data base. This
data was to be put in a single data base with common data entry
screens, The coding structures needs would be contained in a central
control data base and read into the programs for the purposes of
editing and reformating the account number. This scheme allowed the
seperate coding structures without the need for seperate data entry
screens. The codes were to be entered into a free form block, big enough

Paper 30L44 3 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

to accommodate the largest coding structure, and then c¢onverted to the
proper corporate format. The conversion process was to be parameter
driven and totally independent of the code of the screens.

The other data that was special to each organization would be kept in a
set of free format tables and would be defined via a data dictionary for
each organization. If the data needs of the organization would
change then one ¢ould merely change the dictionary to reflect these
changes. The data could therefore be independent of any physical
structure through the wuse of a dictidnary.

Reporting Needs

The only formal reports ¢that would be developed would be the company
level Treports. They would be provided with the system. All other
reports would be written via a simple user report writer using the
dictionary as its mean of pulling both custom and common data. Assistance
would be provided in writing these reports, but the burden of writing
most of reports would fall upon the user. Because of this approach to
reporting needs, it became apparent that there was a great need
need for adequate and flexible training.

Training Needs

The problems of developing a training methodology which +took into account
the changing personnel as well as the customized features were numerous.
The normal approach of developing an operator manual was not
satisfactory. The other approach of custom training sessions seemed too
time consuming and not very practical. It was decided that the system
would have to be ’self-documenting’. I know, every system Iis
self-documenting. But, alas we were truely faced with developing the
first, and maybe only, self-documenting system. The approach we elected,
was the wuse of help screens, developed by the user, and a simple
tutorial program. The tutorial program presented small amounts of factual
information and then quizzed the user about the material.

IV. Design Tools

Now that ¢the requirements and general system approach are clear, a
discussion of the techniques used to accomplish the overall design is
appropriate. The techniques that we wused are technically simplistic
and the implementation of them 1is not difficult.

Modular Code

I know that we all conceptually know that developing code in small, well
defined modules is correct, yet we all seem to develop code which
satisfies the initial requirements, but is not as easy to maintain as
one would like. These sacrafices are normally done in the interest of
saving time. Well, I too have fallen into this evil temptation, but
now that I am working for a software house, I have seen the error of my
ways. If there was any one area that we could have improved wupon, it
would have been this area. We succumbed to pressure and developed
code which later became difficult to change without some significant

Paper 30LY b WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

structural changes. Please listen and repent, write code in small, well
defined modules and you will ©be saved the software god’s wrath and
punishment of spending late evenings doing rewrites.

Data Dictionary

The data dictionary allowed multiple views of the common data and the
definition of data specific to a particular organization. Being that
all of the reports were driven by the dictionary, commonality of
reporting methods were maintained. The dictionary, in addition to
providing fixed view of the common data, allowed the user to merge their
specific data with the common data. The dictionary chosen was easy
to modify and provided simplistic¢ security features. These security
features ensured the client of their data privacy.

Customized Tables

This tool, together with the data dictionary, allowed us to meet the
customization requirements. The technique we used was very simple., We
developed a data base that contain tables of various lengths. The keys
to these tables were the table name and the key value. The users used the
dictionary to define the contents of each of table. As the user’s data
needs changed, they could change the definition of ¢the tables in the
dictionary. ’

Message Catalogs

As of MPE 1V, message catalogs became available to the common user. A
message catalog 1is a collection of messages keyed by a message number.
These catalogs are built via the MAKECAT program available in PUB.SYS.
The obvious advantage of using a message catalog is not having to hard

code each of the messages in your program. It also allows you to
customize your messages for each client, including writing the messages
in different languages. Another advantage of message catalogs is

that they are allocated to a system extra data segment which provides
access to your message at a speed akin to greased lightning. We set up a
message catalog for each of users, which they were able to customize to
their needs. This customization required 1little or no effort on
the data processing staff. The catalogs could be changed at any time and
as often as the user required.

Help Facility

This facility at first seemed like the hardest to develop. What we ended
up with is an elegantly, simple approach. We developed a data base
that was keyed by userid and screen id. The only data in the data set was
a name of a file which contain helpful hints written by the wuser.
When the user hit the help button, the program would fetch the file name
from the data base. The program would then take <the terminal out of
block mode and display the text. When the user was ’finished’, the
terminal would be: placed back into block mode and the screen
redisplayed. 1 was surprized by what the user put into these files. The
files contained common codes, examples of reports, people to contact in
case of problems, and manual/automatic procedures.

Paper 30L44 5 WASHINGTON, D. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

Tutorial System

This tutorial system was another simple solution to our training
problem. What we wanted to get around was having to write a
training system for each organization’s customized subsystem. What was
developed was a data base with two types of data; text or factual
information and the question and answer data. The text data was keyed
by topic and organization. The question and answer data was keyed by
topic. There were a number of questions. The questions were randomly
selected and the answers were randomly displayed. The answer correct
answer was always displayed. When the wuser selected the correct
answer, he was given an appropriate message of praise. If an incorrect
answer was chosen, he was prompted again for the answer. Score was
kept and displayed to the user at the end of their session. The users
developed both the factual information and the question and answer
information. The little subsystem was later used in other systems.

Control Database

The control data base was our answer to the different c¢oding

structures. The data base contained a ‘key’ to their coding
structure. The ’key’ is read in by the program, as its guide <¢o the
data requirements. The wusers had the option of using their custom

tables to edit these codes or wait until they were edited against the
corporate system.

Profileable Processing

This 1is one of those tools developed via that useful design tool called
hindsight. In the original design, all of +the conversion that took
place between the organization’s code structure and the corporates, took
place in a custom program. This program converted each organization's data
and output a file to corporate system. It has occurred to me that these
conversion routines could have been written in the report writer
using custom tables for the conversion. This would allow the user to
change his profile as he desired.

It has also occurred to me that the data dictionary could have had more
'profileable’ options for editing on the screens. The
organization’s ’profile’ could be read into the data entry screen program
at the beginning and could control what processing went on. My feeling
about this particular feature is that, although feasible, it may
not have been easily Justified for a single purpose system.

V. Conclusions

It is in the conclusion of the paper that one tries to drive the the
point home in a clear and concise format. If I were to try to make one
point via this paper it would be, it is possible to design a flexible,
yet simple system that does similiar processing. Although this type
of system is feasible, it will only be cost worthy if you decide
upon this approach from the beginning of the design process. It will allow
you to develop a system which is easy to maintain and enhance. It will
save you from going hack and having to retrofit a system to a ’new’

Paper 30LL4 6 WASHINGTON, D. C.

s

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

organization’s needs. The key points of the approach we have discussed
are:

6 Pre-planning
Determine what features that you would like to implement. Know
what is going to be included in your core system and what features
are going to be customizable.

6 User Support
It was obvious that the burden of a heavily customized system
is on the user. If your user is not very sophisticated or
active in the design process, then stay away from this approach.
A customized system will only work if the user is active and
comfortable with the tools that you are going to provide them.
This approach is not for a user who does not know what a computer
is, much less how to logon.

¢ Do not build Rome in one day
It is not humanly possible, regardless of what kind of superstar
you are, to implement all of the features, both custom and core,
in one day. Implement your features in modules. Bring one
module on at a time. Let the dust settle before attempting to
implement another module.

0 Carefully determine what your core system will be.
It is real easy to include things in your core system which are not
truely shared by all your users. If your core is not pure, you
find that implementing your customized features will become
difficult. If you find that your core is very small, then maybe
you do not have a system that will fit this approach. You may
have to finally admit that you are really dealing with five
different systems.

6 Choose your development tools carefully
There are a number of data dictionaries and fourth generation
languages on the market. Many of these packages are excellent, but
alas there are a number which are cumbersome and may not fit your
overall objective of flexibility and ease. Evaluate the tools
you plan to use and make sure they do not make more work than they
save.

© Modular Code
I know I have harped on this before, but this could be a
universal truth and I don’t want it to slip past. In any system,
the more compact and modular your code is, the easier it is to
maintain. I don’t remember the numbers exactly, but I do remember
that the majority of software dollars is spent in maintenance of
existing systems. Make it easy on yourself or those that will
end up supporting your code, write modular code. It is easier
to debug when there are problems and easier to enhance when the
need arises.

0 Message Catalogs/Help Facilities
Since the design of this system, MPE has allowed users the ability
to add to the help facility that is part of MPE. This facility
provides you, the analyst, with a very inexpensive help system.
Take advantage of it. Its a freebie. They don’t come arcund very
often.

Paper 3044 7
WASHINGTON, D. C.

.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

As with all system design methodologies, this methodology does not
fit every business problem. This technique has been helpful for me
for business problems which span multiple organizations, yet do
essentially the same processing. The technique has some real
disadvantages that one needs to be aware of namely:

o Need for user support
This approach will not work at all if the user is not
behind the concept in more than verbal consent. The user
plays a significant role in making the customization
features work.
o Need to decide on this approach from the beginning.
If you do not elect to use this approach from the
beginning you will find it next to impossible to
retrofit once the design process has progressed significantly.

I hope this discussion of an approach to handling the problem I
discussed, as well as a description of the techniques used, has been
helpful to you. I would like to thank those people who have helped
me put this paper together; Richard Diehl, Ed McLaughlin, Jim

Kramer, and Mitchell Humphrey.

Paper 30LY 8 WASHINGTON, D. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

3045, The Twilight Zone Between MPE Capabilities.

Jelle Grim
Holland House
AALST, Holland.

Abstracs.

Within the MPE Operating System a number of so0-called
Capabilities are recognized which define the actions a user (or a
program) cam perform on the HP3000 system. These capabilities can
be used to implement and maintain the security and the integrity
of the system. The most critical capabilities are SM (System
Manager), OP (Operator/Supervisor) and PM (Privileged Mode).

The traditional HP3000 systems always had assigned to them a
System Manager who, by means of his so-called Capability Set, had
access to all resources of the system. However, with the
introduction of the 1lower-cost HP3000 systems and the ongoing
hardware decentralization, it will not always be desirable and/or
feasible to let a full-time user of a decentralized system have
all the c¢apabilities. In other words : These systems will not
have a full-time system manager and/or console operator.

This paper will describe a method, that can be used to assign
capabilities to certain users dynamically instead of statically,
i.e. only those capabilities and only for so long as is
necessary to perform a specific task. Needless to say that this
must be accomplished while retaining security and including all
required measures to avoid undesirable adventures. As the
“"carrier” of this method a menu processor can be used, whilst
also some intrinsi¢ substitution will have to take place. These
items will be discussed also.

Contents.

1. Introduction.

2. Design Considerations.

. DCAPS, the Dynamic Capability Switch.
RESCOM, the Restrictive Command Intrinsie.

MENUPROC, the Alternative Command Interpreter.

N U W

. Tying it All Together.

1. Intreduction.

This presentation will deal with the requirements for a more
dynamic definition of the so-called "capabilities”, that are

recognized within the MPE operating system of the HP3000 series
of computers. Currently these capabilities are supported in a

Paper 3045 1

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

{too) statie way. 1If we go back in the history of the HP3000
series of computers, we will find the cause of this situation.

When the first types of computers {the CX, the II, I1I, L4 and
64) of the HP3000 series were introduced and sold, the investment
for a complete installation normally exceeded $150.000. The
machines were used in a data processing environment, whereby a
number of special functions were recognized. In connection with
the HP3000 machines the function of System Manager, Operator and
often also Account Manager were special and mostly required some
extra training or the hiring of specialized personnel. In
comparison with the investments in hardware and system software
these specializations were justified.

The MPE operating system also recognizes these special functions
by defining special capabilities that were assigned to these
functions, enabling them to perform their specific, specialized
tasks. The capabilities referred here are SM, OP and AM. Within
the MPE security these capabilities give the user a number of
special commands, like ALTACCT (SM only), ALLOCATE {(OP only) and
ALTUSER (AM or SM), and widen the scope of a number of other
commands, like REPORT (especially SM and AM) and STORE
(especially OP).

Lately Hewlett-Packard has introduced more and more low cost
HP3000 systems, like the 39 and recently the 37. Currently it is
possible to acquire a complete HP3000 system for less than
$30.000. Now the picture changes, because it is no longer
feasible to appoint expensive System Managers and/or operators
full time for these small installations. In the best case, if
these small installations are part of a multi-machine user, a
specialist of the central DP department will dedicate some time
to these mini-mini’s now and then, thereby acting as a part-time
or ad hoc System Manager.

However, some tasks involving special ¢apabilities have to be
done on a regular basis or have to be done on an ad hoc basis,
when a specialist is not available. This can be solved by
assigning one or more of these special capabilities to one or
more of the regular users of these little systems. Now here’s the
catch. The special capabilities OP and even to a greater extend
SM give the user, who has these c¢apabilities assigned to him,
almost unlimited power within the MP® operating system and its
security. Obviously this situation is not very nice, either
because of educational reasons (playing system manager or
operator just requires some specialist knowledge), or because of
security reasons (often it is not advisable to let a "regular”
user have access to all information stored within a machine).

Currently there is no “in-between”, i.c. there is no such thing
as a sort-of System Manager or a partly Operator or a pseudo
Account Manager, in other words :

There is no twilight zone between MPE capabilities.

Paper 3045 2 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

Thinking of this problem, it seems that a lot of things will be
solved, if we would have a mechanism for dynamic capability
switching. Dynamic Capability Switching, in this context, would
mean, that a "normal" user gets a special capability (OP, SM, AM,
etc.) assigned to him for so long a time as he needs it to
perform a certain task. After that task is finished, he has to
return to the status of "normal" user again. Furthermore, once
we would have this mechanism we could also use it for the
following, additional operations that we have been thinking
about, but that were impossible to implement under the standard
MPE operating system :

- A user with temporary AM capabilities could be allowed to
change his own password, to perform some file management
within his own account, BUT he must NOT be allowed to
perform a PURGEUSER or PURGEGROUP command.

~ A user with temporary OP capabilities could be allowed to
use commands like ALLOCATE or SWITCHLOG, to alter the
JOBPRI to be able to submit a job to the CS queue, BUT he
must NOT be allowed to perform a STORE command for files
outside the logon group.

And, of course, once the problem of dynamic ¢apability switching
is licked, it will also be applicable to other capabilities like
SF (save files), PH (process handling), DS (extra data segments)
and PM (Privileged Mode !!!).

Although it seems that the only thing, that is needed now, is
some sort of capability switching utility, there is more to this
alteration of the MPE capability principle than meets the eye.

Therefore, +this paper will elaborate on a number of design
considerations with regard to the Dynamic Capability Switch, with
rough designs of the components that, together, will form a
complete dynamic capability switching mechanism. The concluding
chapter will describe a way to integrate all components as
described above into one unit, whereby an applications manager
will be the end result.

2. Design Considerations.

In this chapter we will try our hand on desc¢ribing a number of
features and other assorted items with regard to the design of a
dynamic capability switching system. As with most utility-type
software, it is possible to turn out a quick-and-dirty routine,
that performs the capability switching, without looking at the
implications on system security, system integrity, etc.

However, thinking about the potential of a capability switching
utility, everyone will agree that at least some caution will have
to be applied when designing, building and using this software.
This paper will not try to present an all watertight design for
the capability switch, but it will merely point out a number of

Paper 3045 3 WASHINGTON, O. 6.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

pitfalls, temptations and dangers, that have to be avoided at all
costs.

In the following pages a number of items with regard to the
design of the dynamic capability switch will be discussed.

Stand-alone or Routine.

The choice that has to be made here is between supporting the
capability switch as a stand-alone program and supporting the
switch as a routine/procedure. Defining it as a program enables
the usage of the switch from within a UDC. On the other hand,
when the capability switch is designed as a routine, it can also
be used from within programs. If the switch must be used from a
menu processor either method will suffice, because most menu
processors support either the execution of programs, or the
execution of external routines or both.

Simple Operation.

It seems best to keep the capability switch as simple as
possible. The basic function of the capability switch must
consist of :

- the ability to switch one or more MPE capabilities on,

- the ability to switch one or more MPE capabilities off,

- the ability to report on the current setting of the MPE
capabilities, and

- any combination of the above.

The actual capability switching will be done on the MPE Job
Information Table (JIT). No additional functions should be
incorporated in the switch. The specification of capabilities
that have to be switched ON or OFF and/or the command needed to
verify the settings can be passed to the program or routine using
a character string.

Usage of Privileged Mode.

It is obvious, that it is necessary for DCAPS, to be able to
perform 1its feats, to wuse the much feared Privileged Mode
capability. Although the PM usage for this purpose is no direct
danger to the MPE integrity, indirectly breaches of
integrity/security can occur when the real hackers enter the
game.

The most stringent security measures must therefore be observed
when determining the location of the program, determining who is
going to use the program and how the program will be used.

Access Security / Location.

As the capability switching utility can be a dangerous weapon in
the hands of an end-user, or worse, in the hands of an evil

Paper 3045 b WASHINGTON, D. C.

BAL TIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

minded end-user a number of precautions must be taken to ensure,
that the capability switch can and will only be used in a
controlled environment. It doesn’t do to leave the possibility
open for just anybody to say “please run DCAPS and give me all
capabilities”,

Therefore both the location and the access of the software must
be controlled. If the switch will be developed as a program, the
best place for it to reside is within a group with the PM
capability within the SYS account, like PRIV.SYS or UTIL.SYS

Furthermore, the program should be protected by a lockword. If
the switch is developed as a routine in an SL, then this SL must
reside in the same group as the program that calls it, for
instance a menu processor. It could be placed in the system SL,
but that would give tooc easy an access.

Restricted Usage.

When a user has certain special capabilities assigned to him it
is no good, to tempt him by letting him have unlimited access to
the MPE operating system. As discussed in the Introduction,
special capabilities will allow the user to use certain special
MPE commands and/or widen the scope of <certain other MPE
commands. It is therefore mandatory to use the switch always in
combination with some kind of restrictive user interface like
User Defined Commands (logon UDC’s) or a menu processor like
HPMENU, HELLO-3000 or UNIMAN, making it impossible for the user
to abuse the power vested in him by the capability switch.

The Danger of the MPE COMMAND Intrinsic.

Even if a restrictive user interface is used, the structure of
the MPE subsystems sometimes offer the possibility to access MPE
commands in a more indirect way. Subsystems like SPOOK, FCOPY,
EDITOR and also user designed software can offer access to the
MPE commands via the so-called COMMAND Intrinsic. If the user
has some additio»nal capabilities assigned to him by the
capability switch at that moment, he can use the MPE commands
belonging to that capability.

A second security enforcer must therefore be implemented in the
form of a restrictive command intrinsic, i.c. a custom made
command intrinsic, that captures all calls to the "official” MPE
COMMAND intrinsic and that only transmits commands, that cannot
be used for less legal purposes, to the MPE COMMAND intrinsiec.
Again, to make the complete capability switching system work, a
restrictive user interface 1is necessary.

The design considerations as discussed above show, that it is not
good practice to just write a little PM program, that will
perform your capability switching. On the contrary, after some
thought anyone will agree that, to support a real dynamic

Paper 3045 > WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

capability switching system, the following c¢omponents are
necessary and should always be user together :

- The actual Dynamic Capability Switch, or DCAPS.
« The Restrictive Command Intrinsic, or RESCOM.
- The Restrictive User Interface, or MENUPROC.

The following chapters will deal with each of these components in
detail.

3. DCAPS, the Dynamic Capability Switch.

To get the logical placement of DCAPS into perspective, the
diagram below shows how it can help a "“special” user to access
the MPE special capabilities.

Three types of users will be recognized :

- The standard user, who has normal access to all standard
capabilities of the MPE operating system.

- The special user, who is just a normal user that now and then
gets one or more special capabilities to perform a certain task

- The system management that normally has all capabilities at its

disposal.
Figure 1. DCAPS, the Dynamic Capability Switch. MPE MPE
Standard Special
Capabilities Capabilities
DCAPS
Standard Specia!l System
User User Man.

The Dynamic Capability Switch or DCAPS must be capable to perform
at least the following activities :

- Switch one or more of the MPE capabilities ON.
- Switch one or more of the MPE capabilities OFF.

Paper 3045 6 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

- Report on the current settings of the MPE capabilities
{ON or OFF).

Some observations can be made. If DCAPS i3 envisaged as a
stand-alone program, the actual capability switching will have to
be performed on the MPE Job Information Table {(JIT), which means,
that the capability switch will be valid until it is switched off
again or until the end of the current session/job.

It is therefore of utmost Iimportance to keep track of which
capabilities have been assigned and to switch the capabilities
off when they are not needed anymore. The information required
for the actual capability switching can be transmitted to the
DCAPS program by means of the ;INFO= parameter of the :RUN
command. The following rules ¢an be implemented :

- If a capability is specified in the INFO-string either as it is
or preceded by a plus sign (+) the capability will be switched
ON.

« If a capability is specified in the INFO-string preceded by a
minus sign the capability will be switched OFF.

- Multiple capabilities specified in the INFO-string must be
separated by commas (,).

- The occurrence of the word VERIFY in the INFO-string, separated
from the other information by commas, will cause DCAPS to
display the status of the capabilities (ON or OFF) after all
capability switches have taken place.

The following examples twould be wvalid c¢ommands to run DCAPS
according to the rules as laid out above :

:RUN DCAPS.PRIV.SYS;INFO="4M,PH"
:RUN DCAPS.PRIV.SYS;INFO="VERIFY"
:RUN DCAPS.PRIV.SYS;INFO="-SM,AM, +OP,+PH,VERIFY"

Another approach is to design DCAPS as a routine, residing in a
privileged SL. For purposes of clarity, this routine will be
viewed as accepting as a parameter one character string with the
same layout as the INFO-strings as described above. A valid call
to the routine would then be : :

DECAPS (INFO); or
CALL DCAPS (INFO) or
CALL DCAPS USING INFO

whereby INFO would be a character string with the contents
"AM,PH", "-SM,AM,+0P,+PH,VERIFY", etc.

An advantage of this method of parameter passing is, that to the
uzer nothing changes in the, case that Hewlett-Packdrd decides to
add a number of new capabflities, change the effect of one or
more capabilities, etc. Only DCAPS must then be changed to
support the new (changed) possibilities.

Paper 3045 7

WASHINGTON, D. G,

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 S

4. RESCOM, the Restrictive Command Intrinsiec.

As can be seen in the diagram below, the RESCOM idea does not
have to be restricted to working together with the DCAPS utility.
RESCOM can also be used to restrict a "normal” users in the MPE
commands, that can be executed programmatically.

Now four types of users can be recognized :

-~ The standard user, who has the standard MPE possibilities at
his disposal.

« The restricted user, who ¢an only perform programmatically the
commands, that are accepted by RESCOM.

= The special user, who will now and then get permission to use
one or more special capabilities, but who can only execute
programmatically the commands, that are accepted by RESCOM.

-~ The System Management that normally has all capabilities at its

disposal.
Figure 2. RESCOM, the Restrictive Command Intrinsic. | ypE MPE
Standard Special
Capabilities Capabilities
RESCOM
DCAPS
Stand. Restr. Speciot System
User User User Man.

In order to intercept calls to the MPE command intrinsic, screen
the contents of the call and to decide whether the call should be
rejected or submitted to the MPE command intrinsic, an alternate
command intrinsic, or RESCOM, must reside in the SL, that is
attached to the program calling the MPE command intrinsiec.

This alternate c¢ommand intrinsie or RESCOM must recognize the
following authorities, possessed by the user calling the
intrinsic :

-~ The authority to execute all MPE commands.

~ No authority to execute any MPE command.
-~ The authority to execute a number of MPE commands.

Paper 3045 8

WASHINGTON, D. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 S

The first two possibilities will not present any real problems
when designing RESCOM. The last one, however, is more tricky and
it requires at least some kind of 1list of authorized or
non-authorized commands. The choice must be made by storing these
restrictions either in a file or in an extra data segment. For
performance reasons the extra data segment method will be
preferable.

An ideal situation would be if RESCOM could be used for both
"normal” MPE commands and programmatically executed MPE commands.
However, this excludes MPE itself (via its UDC structure) as the
user interface. In this case a menu processor like HPMENU,
MenuProcessor or UNIMAN must be used.

Just to illustrate how a menu processor can be used to build an
alternate (restricted) MPE command processor the following will
show a part of a UNIMAN command section doing just that. As the
author is familiar with the UNIMAN menu processor, this package
will be used in all examples pertaining to the menu processor.
See the next chapters for some more information on UNIMAN.

"
* EXAMPLE COMMAND INTERPRETER FOR THE WASHINGTON CONFERENCE
»

COMMAND COM06 ,CONTROLLED
SET UPSHIFT
»

LABEL LOOP

DISPLAY :

ACCEPT MPE

IF PARM MPE EQ BYE
STOP

ENDIF

IF PARM MPE EQ MENU
GOTO END

ENDIF

: !MPE!

IF ERROR
DISPLAY !ERROR!
DISPLAY ENTER "MENU" TO GET BACK TO THE UNIMAN MENU

ENDIF

GOTO LOOP

»

LABEL END
END
*

»

Of course, when executing this file, RESCOM must be activated by
running UNIMAN with the ;LIB= parameter, indicating the SL that
contains the RESCOM routine. Furthermore, RESCCM must have the
information on the commands that are authorized and/or the
commands that are not authorized, at its disposal.

ob
Paper 30L45 9 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

As soon as this part of the UNIMAN designer file is executed, the
screen will be cleared and a normal MPE prompt (:) will be
displayed. From this point onwards, any MPE command entered will
be executed, if it is OK with RESCOM. The BYE command will
terminate the execution of UNIMAN. If UNIMAN is part of a UDC
ending with a BYE command, the wuser will be 1logged off
automatically. If the command MENU is entered, control will be
returned to the UNIMAN MENU-section, that called this
COMMAND-section COMO06.

Special considerations have to be taken into account when
determining the location of +the SL containing the RESCOM
intrinsic., For all accounts outside the SYS account, that have
to run programs to be restricted by RESCOM, the SL containing
RESCOM must reside in the PUB group of that account and the
programs must be run with the ;LIB=G or ;LIB=P parameter.

For programs in the group PUB.SYS, there is a catch, because
PUB.SYS already contains an SL (the system SL). It is therefore
necessary to migrate all programs in SYS, to be restricted by
RESCOM, to a group like, for instance, UTIL.SYS or LIB.SYS. The
SL containing RESCOM must also reside in that group and all
programs must be run with the ;LIB=G parameter.

5. MENUPROC, the Alternative Command Interpreter.

Because DCAPS, the Dynamic Capability Switch, uses some special
capabilities 1itself (especially the PM capability), it is
mandatory that the regular user or even anybody not being the
System Manager has no access to this program. Also the
possibilities created using DCAPS should be shielded from direct
access by the user. It 1is therefore, that some form of
alternative command interpreter or menu processor should be used
to restrict the activities of the users outside the application
that they must process.

Enter MENUPROC. For the purpose of this presentation MENUPROC is
not an existing system, but more a name to be given to the idea
of having an intermediate layer between the user and the power of
MPE. MENUPROC can be anything from a shrewd application of the
UDC structure, using logon UDC’s up to a more developed menu
processor like HELLO-3000 or UNIMAN.

Paper 3045 10 WASHINGTON, O. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Figure 3. MENUPRQOC, the Universal Menu Processor MPE MPE
Standard Special
Capabilities Capabilities
RESCOM
DCAPS
MENUPRQC

Stand, | Restr. | Restr. [Special [System
tUser User User User Man.

A MENUPROC system to be used for this purpose should be designed
along the following reasonable criteria :

- MENUPROC should guide the user from the moment he logs on to
the machine until he logs off again. It should be impossible
for the user to access MPE directly. The logical way to solve
this one is start MENUPROC from a logon, non-breakable UDC.

- MENUPROC must at least be capable of
. Running programs.
. Streaming jobs.
. Executing MPE commands.
. Detecting errors.

- It would be an advantage if MENUPROC would possess its own
security layer, enabling, for instance, extra passwords for
certain for certain sensitive actions.

- It would be an advantage if MENUPROC would have the possibility
for the conditional execution of certain actions based on,

for instance errors detected, the current logon device, the
time of day, etc. Looking at this list it will be obvious that
rather simple systems such as the MPE UDC’s and HPMENU will have
much difficulties in meeting the design criteria for MENUPROC.
However, numerous menu processing systems are on the market or
can even be found on the Interex Contributed Software Library. It
is the responsibiiity of the system management to select and test
one or more of these systems to be used in combination with DCAPS
and RESCOM. It is not advisable to start building one’s own
MENUPROC because the market offers systems for any purpose at
reasonable prices.

Paper 30L5 11

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

In order to see, how the combination of DCAPS, RESCOM and
MENUPROC can work, the UNIMAN package will be used to fulfill the
tasks of MENUPROC. More information on UNIMAN can be found in the
UNIMAN User Manual. For the time being if suffices to say, that
UNIMAN uses a designer file, consisting of MENU sections,
describing screen layouts, the function key labels, and the names
of the COMMAND sections, that have to be executed when a certain
key is pressed, and COMMAND sections, describing the actions to
be performed. The UNIMAN language is rather selfdescribing. In
the following examples detailed explanations will be provided in
those cases that are not directly clear on reading.

* DEMONSTRATION UNIMAN DESIGNER FILE FOR WASHINGTON CONFERENCE

»

* INITIALIZATION, UNIMAN PASSWORD CHECK

*

COMMAND INITIAL

CLEAR

DISPLAY AT 1010,PLEASE ENTER YOUR UNIMAN PASSWORD :
GETPASS EXPASS,CONSOLE

LOAD DEMOL

END

»

* %X ¥ * %

SIMPLIFIED USER MENU DEFINITION

»*

MENU DEMO1

DISPLAY AT 1010,DEMONSTRATION MENU 1
DISPLAY AT 1110,====s=s========z=s=a==
KEY 1,CHANGE\PASSWORD,COMO1

KEY 2,TDP\,COMO2

KEY 3,FCOPY\,COMO3

KEY 4,STREAM\CS QUEUE,COMO4

KEY 8,EXIT

END

»

»

* CHANGE USER MPE PASSWORD USING AM CAPABILITY
»*

COMMAND COMO1

CLEAR

DISPLAY AT 1010,PLEASE ENTER NEW PASSWORD
ACCEPT PASSWORD

:RUN DCAPS.PRIV.SYS;INFO="+AM"
:ALTUSER !USER! ; PASS=!PASSWORD!

:RUN DCAPS.PRIV.SYS;INFO="-AM"

FND

%

»

Paper 3045 12 WASHINGTON. D C

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

* TEXT AND DOCUMENT PROCESSOR USED WITH STANDARD CAPABILITIES
»
COMMAND COMO2,CONTROLLED
:RUN TDP. PUB. SYS
IF ERROR
DISPLAY UNABLE TO RUN TDP
DISPLAY !ERROR!
ENDIF
END
L.
* FCOPY USED FOR FILE MANAGEMENT WITH AM CAPABILITIES
* MAKE SURE RESCOM IS ACTIVATED
L.

COMMAND COMO3,CONTROLLED

:RUN DCAPS.PRIV.SYS;INFO="+AM"
:RUN FCOPY.UTIL.SYS;LIB=G

:RUN DCAPS.PRIV.SYS;INFO="-aM"
END

* x & ¥ X

STREAM A JOB IN THE CS QUEUE USING OP CAPABILITIES
»

COMMAND COMOL ,CONTROLLED

DISPLAY AT 1010,ENTER NAME OF JOBFILE :
ACCEPT JOBFILE

:RUN DCAPS.PRIV.SYS;INFO="+0P"

:JOBPRI CS

:STREAM !JOBFILE!

+JOBPRI DS

:RUN DCAPS.PRIV.SYS;INFO="-0P"

END

»
»

* EXIT UNIMAN, PREFERABLY FOLLOWED BY A BYE IN LOGON UDC
*

COMMAND CoMO8
STOP

END

»

»

Remarks.

- The CCISOLE keyword of the GETPASS statoment indicatas, that
all poassword violations must be loggad onto the system console,

» The vackslash (\) in the KEY statement causes the text jin the
fuirtion key labels to be centered.

- At the location where a parameter name is enclosed in
sxelamation marks (!), the value of that parameter is
siubstituted.

+ The keyword CONTROLLED of the COMMAND statement causes an
automatic CLZAR and DISARLE at the start of the section and

Paper 3045 13
WASHINGTON. D 7

o e —— .

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

a REFRESH at the end of the section.
- The UNIMAN parameter ERROR always contains the last MPE error

encountered, if any.
6. Tying it all together.

The three systems, that are defined so far, and their relations
can be depicted by the following diagram :

i
Paper 3045 14 WASHINGTON, D, C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 S
' 4, The Components Needed for the Solution.
Figure e Comp MPE MPE
Standard Speciat
Copabilities Capabilities
RESCOM
DCAPS
MENUPRGC
Stand. | Restr. | Restr. [Special [System
User User User User Man.
However, the three systems still are very separate and are just a
number of tools to get to the goal as described in the
introductory chapter. The last step 1is to integrate DCAPS and
RESCOM into MENUPROC in order to get a real wuniversal
applications manager. The following diagram shows the new
situation as viewed by the designers of the user menus.
Figure 5. The Integrated Applications Manager.
MPE MPLE
Standard Special
Capabilities Capabilities
APPLIMAN
Stand. Restr. Special System
User User User Man.

The thing to decide upon now is how to achieve this integration.

Just combining the three programs
program is not the solution,

complete program to run in Privileged Mode.

Paper 3045 15

and routines

into one big
because that would require the
No, the best thing

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

to do would be to design A number of commands to add to MENUPROC,
that can describe the designer’s requirements and that interface
to the DCAPS and RESCOM subsystems. Every MENUPROC system will
have its own particulars, so this presentation will just limit
itself to additions that will have to be made to UNIMAN in order
to get something like APPLIMAN.

As the UNIMAN designer file must be compiled before it c¢an be
executed, a new compiler command $PM will be introduced. $PM
indicates, that the designer file may contain statements
requiring access to Privileged Mode routines, in this case DCAPS.
Default will be $NOPM and the UNIMAN password file SKPASS will
contain a list of users, authorized to use the $PM compiler
command.

The next command to be added for usage within COMMAND-sections is
SWITCHCAP, that will be used to switch capabilities. SWITCHCAP
accepts a . parameter a character string as described in the
chapter on . CAPS with the exception of the VERIFY keyword, so the
following UNIMAN statements are perfectly valid :

SWITCHCAP AM,PH
SWITCHCAP -SM,AM,+OP,+PH

The UNIMAN VERIFY statement will be extended with the keyword CAP
that will cause the display of the status (ON or OFF) of the MPE
capabilities. VERIFY ALL will also include this display.

The integration of the restrictive command interpreter will be
performed using an extra data segment to store all commands with
their ON/OFF indicators. To initialize the status of the
commands, two compiler commands have to be added : $ALLOW to
initialize all commands as being allowed and $DISALLOW to
initialize all commands as being disallowed.

The COMMAND-section statements ALLOW and DISALLOW must be added
to allow or disallow commands on an individual basis. Both
commands accept as a parameter one or more cummands, separated by
commas. An ALLOW for a specific command stays in force until it
is disallowed by a DISALLOW command.

The UNIMAN VERIFY statement will be extended with the keyword
ALLOW that will cause the display of the status (ALLOWed or
DISALLOWed) of the MPE commands. VERIFY ALL will also include
this display. The UNIMAN designer file as described in the
chapter on MENUPROC will look like this after the addition of the
new commands : (see next pages)

Using this setup, an extra security measure c¢an be achieved.
Instead of changing the capabilities in the Job Information Table
(JIT), it is now possible to change most capabilities on the
stack of the UNIMAN process. The advantage is that, when UNIMAN
is aborted for whatever reason, the special capabilities will be

Paper 30LS 16 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

gone also, so the user can never end up within MPE with sgome
special capabilities left.

* DEMONSTRATION UNIMAN DESIGNER FILE FOR WASHINGTON CONFERENCE
- ‘

$rM

$DISALLOW

"

* INITIALIZATION, UNIMAN PASSWORD CHECK

L

COMMAND INITIAL

CLEAR

DISPLAY AT 1010,PLEASE ENTER YOUR UNIMAN PASSWORD ¢
GETPASS EXPASS,CONSOLE

. B

ALLOW BUILD,FILE,HELP,LISTF,PURGE,RELEASE,RENAME,REPORT ,RESET
ALLOW RESTORE,SAVE,SECURE,SHOWJOB, SHOWME , SHOWOUT , SHOWTIME , STORE

ALLOW STREAM,TELL,TELLOP
"

LOAD DEMO1
END

* SIMPLIFIED USER MENU DEFINITION
"

MENU DEMOl

DISPLAY AT 1010,DEMONSTRATION MENU 2
DISPLAY AT 1110,=============z=s=z===z==
KEY 1,CHANGE\PASSWORD,COMO1

KEY 2,TDP\,COMO2

KEY 3,FCOPY\,COMO3

KEY Li,STREAM\CS QUEUE,COMOL

KEY 8,EXIT

END

»

L

* CHANGE USER MPE PASSWORD USING AM CAPABILITY
"

COMMAND COMO1

CLEAR

DISPLAY AT 1010,PLEASE ENTER NEW PASSWORD :
ACCEPT PASSWORD

SWITCHCAP +AM

:ALTUSER !USER! ;PASS=!PASSWORD1
SWITCHCAP -AM

END

»

"

"

"

* TEXT AND DOCUMENT PROCESSOR USED WITH STANDARD CAPABILITIES

Paper 3045 17

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

COMMAND COMO2 ,CONTROLLED
:RUN TDP.PUB.SYS
IF ERROR
DISPLAY UNABLE TO RUN TDP
DISPLAY !ERROR!
ENDIF
END

* FCOPY USED FOR FILE MANAGEMENT WITH AM CAPABILITIES
* MAKE SURE RESCOM IS ACTIVATED
]

COMMAND COMO03,CONTROLLED
SWITCHCAP +AM
:RUN FCOPY.UTIL.SYS;LIB=G
SWITCHCAP -AM

END
"

]
#* STREAM A JOB IN THE CS QUEUE USING OP CAPABILITIES
"

COMMAND COMOL ,CONTROLLED

DISPLAY AT 1010,ENTER NAME OF JOBFILE :
ACCEPT JOBFILE

SWITCHCAP +OP

:+JOBPRI CS

:STREAM !JOBFILE!

:JOBPRI DS

SWITCHCAP -OP

END
"

]
* EXIT UNIMAN, PREFERABLY FOLLOWED BY A BYE IN LOGON UDC
"

COMMAND COMoO8
STOP

END
"

Biography.

Jelle Grim worked for the same company, the contractor Royal
Boskalis Westminster from 1966 to April 1984. Starting as a civil
engineer in the technical area he almost immediately switched
over to the computer section. The Boskalis automation between
1968 and 1984 changed from in-house IBM S/3, through external
data processing at a CDC service bureau using local Datapoint
mini’s, to in-house HP3000 equipment from 1978 onwards. When
Jelle left Boskalis he was Information Network Manager in charge
of a dual HP3000 network serving approximately 200 terminals and
microcomputers both in Holland and abroad. In April 1984 Jelle
and his partner Rene van Geesbergen together founded Holland

Paper 3045 18

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

House, a company specializing in HP3000 system management
consultancy and software products. Jelle is secretary of the
Dutch Users Group HP3000 (DUG) and a member of the Amsterdam 1985
Host Committee.

P oL
aper 3045 19 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

3046. Store-And-Forward Data Transmission in a Multi-System Network
John P. Korb, CCP
Innovative Software Solutions, Inec.
10705 Colton St.
Fairfax, Virginia 22032

Most of us think of a network of HP 3000s as two or three or maybe even
five to ten HP 3000s connected together with DSN/DS3000. We think of a
network where DSCOPY, the P-to-P intrinsics, Remote File Access (RFA),
or perhaps Remote Database Access are used to pass data between
systems, with job streams, UDCs, and/or path-specifi¢ programs
controlling the operations.

In most of these networks, each data path is treated differently, often
because some paths have direct data source to data destination links,
while other paths may have to cross one or two or more intermediate
systems. This path specific “coding” of job streams, UDCs, and/or
programs is acceptable for small networks with few paths, but presents
a "design and maintenance nightmare” when large networks of fifty or
more systems with tens or hundreds of paths are involved.

This paper presents one approach to providing a standardized interface
to the application programmer to be used for transfering data from any
point in a network to any other point in the same network utilizing a
store-and-forward design philosophy.

Store-and-forward was chosen because of the realities of communicating
between approximately 55 HP 3000 systems in many different time =2ones
all over the world. With systems in many different time zones, each
operating on local time, there is almost always a 'nightly” backup
going on on at least one of the systems. Without a store-and-forward
philosophy, applications would have to be "smart” enough to take into
consideration the time 2zones of the processors between the local
processor and the data destination processor, the dump times of the
"bridge"” processors, et¢. and might be confined to limited time windows
for transmission.

Store-and-forward eliminates these worries from the application
programmer/designer. No longer does a whole day’s transactions need to
be batched until some 2 hour time window. No longer are there the
pani¢ calls at 6 AM because one on the DS lines along the way was down,
so nothing was transmitted, and no new attempt can be made until the
next transmission window some hours away.

By adopting a store-and-forward network design, applications
programmers can have their programs write transactions to the Network
as they occur, and the Network will %ransmit the transactions as the
necessary DS lines become available. If the transactions need to go to
a central system some four or five DS lines away and one or more of the

systems along the way are unavailable, there is no problem. The
Network transfers the transactions as far as possible, stopping at the
break in connection. When the connection is re-established, the
transactions continue along on their way - all without the the

programmer having to worry.

Paper 3046 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

What is the Network?

The Network is a collection of programs, procedures, files, databases,
and job streams which when properly configured provide a data
transportation system with the capability of transporting data from any
point in the Network to any other point in the Network.

What is its Purpose?

The purpose of the Network is to provide a consistent, reliable,
standardized method of transferring data between applications programs
on any HP 3000 CPU in the Network.

What are its Features?

o It can accomodate a configuration of up to 1024 HP 3000 CPUs.

o Each CPU can be configured to contain up to 15 “logical
nodes”.

o Each "logical node"” is referenced by the application
programmer via a U4 character PSD (Processing System
Designator) code.

o Each "logical node" can have up to 32768 application
"function" codes.

o Each "function" code ¢an have up to 32768 application
“"process” codes.

o Up to 32767 pre-defined ciphers can be used for encoding
transmitted data.

o The Network is based on store-and-forward operation, buffering
data to disc when physical communications lines are not
available, and when the application on the receiving end is
not running.

¢ Each time an application program receives a data packet from
the Network it also receives the "logical node", "function"”,
and "process” codes of the application which transmitted the
data packet.

© All application program access to the Network is via eight
standard network Procedures.

o Up to 800 words (1600 bytes) may be transferred with one
procedure call (ie. in one data packet).

6 An application can provide a data record "type" parameter to
the receiving application along with but not included within
the data record.

o An application can provide a "heading" and "heading type” to
the receiving application along with but not included within
the data record.

o Depending on configuration, each Network user can be required
to provide a unique Network password.

o When reading from the Network, the receiving application has
the option of being placed on wait indefinitely if there is no
data available, or waiting for an application program
determined interval (1 to 255 seconds) for data, then timing

Paper 3046 2 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 86

out and returning a "no data available”™ error to the
application.

The Basic Components of the Network

The Network Software consists of three major modules: 1) The user
interface (the Network Procedures). 2) The packet switching and
transmission code. 3) The maintenance and utility code. The user
interface ©provides eight procedures which the applications
programmer uses to write data to or read data from the network.

The packet switching and transmission consists of three programs. The
Traffic Control Supervisor Program (TCSP), which is run from a batch
job and acts as the creator and controller of the packet switching
program, and the packet transmitting program.

The Traffic Control Progam (TCP) performs the packet switching
function, reading packets from its input queue and writing them to
areas for local NETREADs or to the input queue of a packet transmitting
program if the packet is bound for a remote system.

The Network Message Transmitter Program (NMTP) performs the data
transmission function. One NMTP runs for each DS line configured. The
NMTP opens a DS line to the adjacent system, sets up a file equation to
the input queue of the remote TCP. It then reads packets from its
input queue and writes them to the input queue of the remote TCP. By
having one NMTP per DS line and separate input queues for each NMTP, a
DS 1line "hanging” or an adjacent system being down or otherwise
unavailable does not affect transmissions to other adjacent systems.

The Network maintenance and utility code consists of a set of programs
used to:

1) Build an initial configuration of the Network on a processor.

2) Provide a means of modifying the configuration of the Network
on a processor.

3) Provide a means of adding to, deleting from, or modifying the
local configuration of the Network pertaining to which users
may access the Network, what passwords they must supply when
opening the Network, etc.

4) Provide reporting on the activity of the Network, including
usage statistics by user.

5) Recover from system failures or other interruptions which
prevent the TCSP and its child processes (TCP and NMT's)
from closing their files, emptying their extra data segments,
etc. and terminating normally.

Paper 3046 3 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

Environmental Requirements

Because of the nature of the software, all of the Network Software is
written is SPL. The code requires PM (Privileged Mode), MR (Multiple
Resource Identification Number), PH (Process Handling), and DS (Extra
Data Segment) capabilities, and to a limited sense is operating system
specific (MPE IV, MPE V/P, and MPE V/E are all supported by one, common
version of the software through specific routines for specific levels
of MPE). The Network Procedures reside in two user-callable privileged
system code segments, allowing the procedures to utilize Privileged
" Mode without the application programmer having to have PM or prep the
application programs with PM capability.

User programs wishing to call the Network Procedures must have MR
capability. While only a very small amount of code would be needed to
remove this requirement, it was decided to not "do the user the favor"
of obtaining MR, using it, then giving it up, in order to force the
application programmer to have MR capability, and thus, further
restrict who can access the Network.

How does one use the Network?

The Network is accessed through eight Network Procedures. These
procedures are standardized and are the same on all HP 3000 systems in
the Network. Using these procedures, one opens the Network, then reads
data from or writes data to the Network, and when done, closes the
Network. The Network Procedures set up and maintain the extra data
segments(s), buffers, data base, and files necessary for interaction
with the Network. Please take a moment to briefly scan the procedure
descriptions in appendix A and the glossary before continuing.

The Network Procedures

As mentioned earlier, access to the Network is through the Network
Procedures. These eight procedures perform the functions of opening,
closing, reading from, writing to, controlling, explaining error
messages, and retrieving information about the status of the Network.

Below is a brief description of each of the eight Network Procedures.
For parameter information on the procedures, please see appendix A.

NETOPEN

NETOPEN is used by an application program to gain access to the
Network. Before any data can be written to or read from the Network,
the Network must be opened via NETOPEN. NETOPEN identifies the user to
the Network, sets the source PSD code, SFUNC, and SPROC the Network
will use to identify the source of any data packets transmitted by the
user, and determines the cipher (if any) that will be used to encode
any data packets transmitted by the user.

Paper 3046 Y
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

NETCLOSE

NETCLOSE is used by an application program to terminate access to the
Network. When an application is finished using the Network, it MUST
CALL NETCLOSE to gracefully terminate access to the Network. IF
NETCLOSE IS NOT CALLED BEFORE THE PROGRAM TERMINATES, THE LAST RECORD
RECEIVED FROM THE NETWORK MAY BE REPEATED THE NEXT TIME THE NETWORK IS
OPENED WITH THE SAME PSD, SFUNC, AND SPROC (this depends on the local
Network configuration). Note that NETCLOSE mode 2 gracefully
terminates access to the Network, yet leaves the last record received
in a state where it will be the first record read the next time the
Network is opened (depending upon the local Network configuration).
NETMODE 2 is provided as a means of avoiding the loss of a record which
the application could not process (ex. when reading from the Network
and writing to an output file, the application reaches end-of-file on
the output file, and cannot process the record just read from the
Network).

NETREAD

NETREAD is used by an application program to receive data from the
Network. NETREAD returns: 1) the data record (packet), 2) the PSD
code of the sender, 3) the SFUNC of the sender, L) the SPROC of the
sender, 5) the record type supplied by the sender, 6) the heading type
supplied by the sender, and 7) the heading data supplied by the sender.

NETWRITE

NETWRITE is used by the application program to transmit data (pass data
to the Network). The application program provides NETWRITE with: 1)
the data record (packet), 2) the PSD code of the destination, 3) the
DFUNC of the receiver at the destination, 4) the DPROC of the receiver
at the destination, 5) the record type of the data record (packet), 6)
any heading data for the data record {packet), and T7) the heading type
for the heading data. The record type of the data record, the heading,
and the heading type are required by the Network to be present, but can
be set to zero if the application has no need for them. The DFUNC and
DPROC are used to determine which application at the destination the
data is to go to. The users of the Network should coordinate between
themselves which values each application will use to avoid conflicts.

NETCONTROL

NETCONTROL allows the application program to change the values used as
the source PSD, SFUNC, SPROC, and CIPHER. NETCONTROL saves the effort
(and overhead) of having to NETCLOSE, then NETOPEN with new parameters.

NETEXPLAIN

NETEXPLAIN is generally called by the application program after an
error has been returned by one of the Network Procedures. NETEXPLAIN
displays an error message, and performs some internal Network cleanup
after an error. The application has the option of having NETEXPLAIN
display the error message on the $STDLIST device, or returning the
message in a buffer for printing by the application itself.

NETINFO
NETINFO allows the spplication to determine which lines are connected

Paper 3046 5

WASHINGTON. D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

and other information about local Network activity. The information
provided by NETINFO is only as recent as the last NETSTATUS call.

NETSTATUS
NETSTATUS provides the application with up-to-the-minute status
information pertaining to local Network activity.

PSD Codes (Processing System Designator Codes)

PSD codes are used by the Network to determine the source and
destination of message packets. A PSD code is a U character code left
justified and right filled with blanks if less than Y characters in
length. The PSD code is used only as an interface to the application -
the Network Procedures perform a table look-up on PSD code to obtain
the internal binary address which the Network uses for packet routing.

Because a table look-up is performed to translate the PSD code into a
binary value, switching destination PSD codes frequently (ie. when
sending via NETWRITE) is not advised. Where packets must be sent to
more than one destination, system performance can be markedly improved
by sending with as few destination PSD code changes as possible.

Multiple PSDs are allowed on each CPU. Each PSD code has its own
unique internal binary code, and is addressed separately from the
application program’s perspective. PSDs residing on remote CPUs are
addressed exactly as those on the local system, making transmissions
within the local CPU no different from transmissions to remote systems
once, twice, or many systems removed from the local system.

Because PSD codes are external references to the Network’s internal
binary addresses, and references to PSDs are table driven, relocating a
PSD to a different CPU in the Network 1is possible, and in fact,
relatively simple. Only the table references within the Network are
modified - and only to the extent of indicating the new binary Network
address for the PSD. This makes relocating applications across CPU
boundaries a simple procedure that does not require any program
recompilations or other changes.

Ciphers

The Network provides for up to 32767 ciphers. The ciphers are 16 bit
values and are referenced by the application programmer by specifying a
Cipher Number. The Network uses the Cipher Number to retrieve the
Cipher Value from the Network’s Cipher Table. This has two important
implications.

First, since the application effectively provides an index into the
Cipher Table, Cipher Values can be changed by the Network Administrator
without requiring that the application software be changed in any way.

Paper 30u6 6 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

Second, since the actual cipher is kept in a table, anytime a cipher is
added, changed, or deleted, every Cipher Table in the Network must be
promptly and almost simultaneously updated to reflect the
addition/change/deletion.

As with PSD codes, because the ciphers are kept in a table, the more
the number of changes of Cipher Number, the more table look-ups the
Network must perform, thereby degrading overall system performance.
Use of a single cipher from NETOPEN through NETCLOSE is recommended.

User Blocking/Deblocking

As with any data transmission network, every packet transmitted
requires a certain amount of "overhead" data. Since this overhead data
is fairly constant in length, data transmission efficiency is maximized
when medium to long packets are transmitted. Short packets result in a
much greater overhead-to-data ratio, and thus, are relatively
inefficient.

If you have multiple records of data to transmit, and each record is
rather short (say 80 bytes), consider buffering up several records at a
time into a block of multiple records, then passing the entire block to
NETWRITE. This markedly improves data communications efficiency by:
1) reducing the amount of overhead that must be transmitted over the
communications lines, and 2) reducing the number of packets which must
be processed by the Network software (and thus, the number of disc I/0
operations). Remember, the Network can handle records of up to 800
words in length (1600 bytes). If you are sending 80 byte records
one-by-one, 20 packets (and the processing they require) are necessary
to transmit 20 records. If you buffer the records into a block, only
one packet is necessary.

Preliminary performance data suggests that it takes almost 20 times as
long to transmit and receive 20 packets each containing 80 bytes of
data as it takes to transmit 1 packet of 1600 bytes (these figures are
based upon the transmission of a benchmark file of 1,281,360 bytes of
data at 80 bytes per packet, at 800 bytes per packet, and at 1600 bytes
per packet).

Due to the data independence of the "User Record Type", "User Heading
Type', and "User Heading”, these fields can easily be used to provide
partial block information.

Long Records (greater than 800 words)

The Network can easily handle records of up to 800 words {1600 bytes)
in length. Records longer than.800 words do present a problem. Below
are some suggestions for handling records of more than 800 words.

If your record length lies in the range 801 to 960 words {1601 to 1920
bytes), you can transmit your record in one packet by utilizing up to
160 words in the "heading data” parameter of NETWRITE and NETREAD (960

Paper 30L6
aper 3 7 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

= 800 + 160). To pass a record of between 801 and 960 words, pass part
of your record as "heading data" (the HDATA parameter to NETWRITE), and
the rest the "record data" {the RDATA paramter to NETWRITE).

If this method is used, be sure to pass NETWRITE the correct lengths
for HDATA and RDATA in the HLEN and RLEN, and tag your record either
with a special HTYPE or RTYPE value so the receiving application can
recognize what you have done.

1f your record length is greater than 960 words, you will have to split
your record up into sections of 960 words or less. The Network
software provides four (U4) flags which you should use when splitting
records. These flags are "Continued”, "End-of-Record”, "End-of-Block",
and "End-of-File", and are passed in the "FLAGS" parameter of NETWRITE.
THESE FLAGS HAVE NO SIGNIFICANCE TO THE NETWORK. Your application
program on the receiving end must look for and interpret these flags
and determine what operations to undertake.

Keep in mind that at the receiving end there is always the possibility
that if two people were transmitting data to the same destination and
one or both are performing multiple packet writes to the Network, the
packets may be received interleaved. Thus, if you are expecting a lot
of activity at a specific destination address (PSD, DFUNC, DPROC
combination), your application must be able to handle interleaved
transaction/file packets. The SRC, SFUNC, and SPROC parameters
returned by NETREAD identify the source of the packet, and should allow
a receiving application to properly reconstruct multiple interleaved
packets. Additionally, if long, multi-packet transactions are being
transmitted, using the "heading data" area to tag each component packet
with the name of the file or the ID of the transaction might be
employed to further prevent any intermixing of data.

Accessing the Network

Much 1like an iceberg, most of the Network is hidden from the
application programmer. The application programmer deals only with the
Network Procedures - the user interface to the Network.

The application programmer opens the Network, reads and/or writes
from/to the Network, then closes the Network. To the application
programmer the Network is accessed via Network Procedures, much as a
database is accessed via IMAGE procedures. The parameters passed
to/from the Network Procedures are always passed in the same order,
although some parameters may be omitted from some procedures.

To prevent misrouting of data, only one user at at time may open the
Network with a given PSD, SFUNC, and SPROC combination. Thus, if you
desire to both transmit and receive at the same time, both functions
must be performed by the same program. (Of course, mauy programs may
have the Network open from a given PSD at one time, they just may not
have duplicate SFUNC and SPROC values.)

L
Paper 3046 8 WASHINGTON, D. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

Example. Legal

User A opens the Network with PSD "STAN", SFUNC=0, SPROC=0.
User B opens the Network with PSD "STAN", SFUNC=1, SPROC=0.
User C opens the Network with PSD "STAN", SFUNC=0, SPROC=2.
User D opens the Network with PSD "UCSD", SFUNC=0, SPROC=0.
User E opens the Network with PSD "UCSD", SFUNC=2, SPROC=5.

Illegal

User A opens the Network with PSD “GIT ", SFUNC=0, SPROC=0.
User B opens the Network with PSD "GIT ", SFUNC=0, SPROC=3.
User C opens the Network with PSD "GIT ", SFUNC=1, SPROC=0.
User D opens the Network with PSD "GIT ", SFUNC=0, SPROC=0.
User E opens the Network with PSD "STAN", SFUNC=0, SPROC=0.
User F opens the Network with PSD "STAN", SFUNC=2, SPROC=5.

Users "A” and “D" both attempt to open the Network with the same PSD,
SFUNC, and SPROC values. Only one user can open the Network with a
given combination of values at a time. The first user attempting to
open the Network with a given combination 1is granted access.
Thereafter, all other users who attempt to open the Network with the
same combination will receive an error message until the first user
“releases” the combination by closing the Network with NETCLOSE, or
uses NETCONTROL to change the combination in effect.

When a program 1is written to transfer data from one point to another in
the Network, you either:

1) code two programs, one to transmit data, and one to
receive data (the transmitter is used at one end of your
transmission path, the receiver at the other)

2) code one program which both transmits and receives (this
program is used at one or both ends).

If you desire to both transmit and receive at the same time, both
functions must be performed by the same program. If, however, you are
transmitting and receiving batches of records, transmitting a bdburst,
then receiving a burst, two programs (one transmitting, the other
receiving) may be used, provided that they do not execute at the same
time.

P oLé
aper 3 9 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

Examples.
Key:
= Bidirectional transmission
- Unidirectional transmission
> Information flows to right
Information flows to left
<> Information flows bidirectionally

Washington Network San Diego
1) Transmitter »<-+-- >E==s2===r---as s> Receiver
- OR -
Receiver ge--tacz=====SC--a-- < Transmitter

But Not Both at the same time!!

2) Tranceiver <»===¢3>===z===z=z<>===¢3 Tranceiver
- OR -
Tranceiver <>===<>=z=z===33>----- > Receiver
- OR -
Tranceiver &3=z=z=z<3==z=z===<+~~2-& Transmitter

But Not More Than One of the Above at One Time!!

Please also note that the Network is designed with an option called
"non-destructive read" which the Network Administrator can turn on or
off. It is recommended that this option be turned on for all systems
in the Network.

Non-destructive read allows some overlap time between the time the
Network Procedures read a packet, and the time they delete the packet
from Network storage, providing a safeguard against data loss due to
program or system failure.

This feature can be exploited by the application programmer when
handling aborts. How? Well, when the non-destructive read option is
enabled, the last packet read via NETREAD is not deleted until either
the next NETREAD or NETCLOSE.

Thus, if an application program is reading from the Network and ¢opying
to a database and the IMAGE DBPUT c¢all results in an error (such as
dataset full), if the application program closes the Network with
NETCLOSE mode 2, the last packet read via NETREAD will NOT be lost -
instead, it will be the first packet read when the Network is re-opened
{(with the same SRC, SFUNC, and SPROC parameter values). Again, this
"recovery" option (mode 2) on NETCLOSE 1is only available if
non-destructive read is enabled.

Paper 3046 10

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

When coding calls to the Network Procedures, it is a good idea to
follow each call to NETOPEN, NETREAD, NETWRITE, NETCONTROL, NETINFO,
NETSTATUS, or NETCLOSE with a check of the first element of the status
array returned by the procedures. If the first element (element 0) is
non-zero, the procedure call resulted in an error or warning condition.
The Network Procedure NETEXPLAIN should then be called to display an
explanatory message.

Because the Network Procedures utilize the status array for internal
Network information, it is important that the status array be
initialized to all zeros prior to calling NETOPEN, and thereafter not
be modified in any way by the application program.

Advanced Applications

While the original intent of the Network was to provide a simple,
standardized method of transfering transaction data from any point in a
multi-system network to any other point in the network, the Network
Software is capable of much more.

Utilizing the various parameters available through NETWRITE and
NETREAD, applications can be written to handle individual transactions
coming from remote points, copy files from point to point, issue MPE
commands, and perhaps run programs - all simultaneously. The Network
Software can accomodate such an application, provided the application
is planned in advance.

To set up the receiving program for such an application, you might do
the following:

1) Define a set of codes which will be used to determine the type
of packet being received (transaction, file transfer, MPE

command, etc.).

2) Define how the codes will be passed (HTYPE or RTYPE parameter
perhaps?).

3) Define the heading and data formats to be used for transactions.

4) Define the heading and data formats to be used for file transfers.

5) Define the set of commands which will be available
(programmatically executable MPE commands ... and a special
routine for :RUN).

6) Define the heading and data formats to be used for commands.

Below is an example

1) Operation Codes:

1 = Application Transaction - store on application database.
2 = File Copy - put data in a new file of name and options
Paper 3046 11

Ccomputer
Museum

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

specified in HDATA.
3 = MPE Command - perform the requested command.

2) Operation Codes will be passed as HTYPE,
3) Application Transactions are passed in dataset image format.

4} All file copy packets will have the complete file name
(including lockword, if any) left justified in the first 36
bytes of HDATA. The first packet of a file transmission
will have the text portion of a BUILD command that can be
used for constructing the new file in the next 120 bytes.

5) The following commands will be available:
1) Any MPE command available through the COMMAND intrinsie.
2) The :RUN command.
Commands will be passed in COMMAND image format (including the
terminating <CR>) in the HDATA parameter.
RDATA and RTYPE will be ignored.
If HLEN is zero, the receiving program is to terminate.

As a practical example, econsider the following. By using a scheme
similar to the above, applications on remote processors can gradually
transmit their transactions to the Network as they are generated. The
Network transmits the transactions up to the central system, (for
example) as the connections permit. Because the transactions are
transmitted gradually over an extended period of time rather than as
one large batch at the end of the day, the DS lines between the systems
are not saturated by large volumes of data monopolizing the DS lines,
and lower speed lines may be used. Also, the end of day processing at
the central system can begin shortly after the day closes, as there
most likely are only a few transactions "in transit", most of the
transactions having been transfered during the day, time permitting.

Additionally, using a receiving program similar to that outlined in the
previous example, at the end of the day the application could transmit
an MPE :STREAM command to launch the end of day processing at the
central site automatically after the last transaction is received.

Lessons lLearned

While the Network does add to the processing load of a system, its
ease-of-use, capabilities, flexibility of configuration, and relatively
low maintenance and recovery requirements make it a very useful and
productive tool for the applications programmer and user community.

The data transmission efficiency is very dependent upon the size of the
data record {or block) passed to the Network. The larger the record
{block) transmitted, the less processing the Network is required to
perform, and the faster the data is transmitted. Preliminary
performance data suggests that transmitting a file of 80 byte records

Paper 3046 i2
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

one per packet takes almost twenty times as long as transmitting the
same file with twenty 80 byte records in each packet. The point here
is that the limiting factor is the number of packets the Network can
transmit in a given period of time, not the number of bytes in a
packet.

Because the Network Software had to meet the requirement of not loosing
any data due to a system failure, certain processing actions had to be
taken, all of which 1limit the wultimate performance of the Network
Software.

First, the file labels on all IPC files are updated after every write.
This forces the data to disc and protects it, but a tremendous penalty
is paid in performance on high speed lines {(56kb) where the time spent
waiting for the disc I/Os to complete is a performance limiting factor
IN TRANSMISSION.

Second, there is the requirement that some sort of logging be utilized
to retain at least the last 100 packets transmitted for aiding in
recovery after a system failure. This requires MORE dise¢ I/0 and
incurs additional delays -~ but it sure does simplify recovery, and
reduce the chance of lost data.

Third, transmission statistics for wvolume analysis. While the
statistics the Network keeps on its activity are interesting to say the
least, a great deal of time 1is spent continuously gathering and
updating those statistics.

Finally, IPC files don’t survive system failures very well unless you
force the file label to disc after every write, so many of the above
concerns are a moot point. In cases where the forced write has been
deliberately disabled (or where the system was running with
BLOCKONWRITE = NO), the chances of recovering {intact) an IPC file have
always turned out to be slim - very slim - say 10% of the time the file
is recoverable.

With the forced writes the IPC files are almost always recovered after
a system failure (there was once a case of an IPC file damaged by a
system failure that would hang the system any time you tried to access
it thereafter), making the Network a safe, reliable, easy-to-use
communication subsystem for the HP 3000.

Appendix A
Procedure: NETCLOSE

Purpose:
Used to properly terminate access to the Network.

Parameters:
STATUS ARRAY
Used to return status information to the application program.
MODE

Paper 3046 13 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

Used to determine how the Network is to be closed - with
a non-destructive read (useful for application aborts),
or normally.

Procedure: NETCONTROL

Purpose:
Used to change the values of certain user attributes only
otherwise changeable by closing and re-opening the Network.
Parameters:
STATUS ARRAY
Used to return status information to the application program.
MODE
Defines which parameters passed to NETOPEN are to be changed.
SRC, SFUNC, SPROC, and CIPHER may be changed.
PASS
Password - to verify the identity of the user to the Network.
SYSTEM
Used when passing a replacement SRC value.
SFUNC
Used when passing a replacement SFUNC value.
SPROC
Used when passing a replacement SPROC value.
CIPHER
Used when passing a replacement CIPHER number.

Procedure: NETEXPLAIN

Purpose:
Displays error and status information. Should be called
after a Network Procedure returns with the first element
of the status array non-zero.
Parameters:
STATUS ARRAY
Used to return status information to the application program.
MODE
Determines whether the error message is to be printed on
the $STDLIST device or returned in the buffer supplied
by the application program.
BUFLEN
The length of the buffer area used {in bytes). A negative
number.
BUFFER
An array to contain the error message returned.

Procedure: NETINFO

Purpose:
Returns information as to the connections, past status
of the Network. Information is returned in the same
format as NETSTATUS, but information is not as up-to-date.

Paper 3046 14
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

Parameters:

STATUS ARRAY

Returns status information to the application program.
MODE

Indicates the type and volume of information requested.
SYSTEM

Used when specifying a status request for a specific PSD.
BUFLEN

The length in words (positive) of the buffer returmed.
BUFFER

Contains the status information returned.

Procedure: NETOPEN

Purpose:
Opens access to the Network. Must be called before any other
Network Procedure.
Parameters:
STATUS ARRAY
Returns status information to the application program.
MODE
Used to tell the Network which "copy" of the Network
to use (the software allows for multiple copies of the
Network Software so that a production version of the
Network can coexist with a test version of the Network).

PASS

User password.
SRC

The source system PSD.
SFUNC

The source function number.
SPROC

The source process number.
CIPHER

The cipher number of the cipher chosen for transmission.

Procedure: NETREAD

Purpose:
Reads packets from the Network.
Parameters:
STATUS ARRAY
Returns the status of the call to the application program.
MODE :
Determines the read mode. Reads may be unconditional (if
no data is available, NETREAD waits until data becomes
available) or timed (NETREAD waits a specific number of
seconds before returning a “No data available" warning).
SRC
The source PSD of the packet received.
SFUNC
The source function of the packet received.

Paper 30L6 15 WASHINGTON. D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

SPROC
The source process of the packet received.
FLAGS .
The flags set by the sender.
HTYPE .
The heading type as defined by the sender.
HLEN
The length of the heading in words.
RTYPE
The record type as defined by the sender.
RLEN
The record length (in words if positive, in bytes if
negative).
HDATA
The heading data received.
RDATA
The record data received.

Procedure: NETSTATUS

Purpose:
Returns status information on the lines tc¢ the adjacent systems.
Parameters:
STATUS ARRAY
Returns the status of the call to the application program.
MODE
Indicates the type of status request.
SYSTEM
Used to supply the PSD of a system when specifically
requesting information on a system.
BUFLEN
The number of words returned to the buffer area.
BUFFER
The area to which the status information is returned.

Procedure: NETWRITE

Purpose:
Writes data to the Network.
Parameters:
STATUS ARRAY
Returns the status of the call to the application program.
MODE
Must always be 1.
DEST
The PSD of the packet destination.
DFUNC
The function of the destination.
DPROC
The process of the destination.
FLAGS

Describes the options used in transmissions (to be continued,

Paper 3046 16

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

end-of-record, end-of-block, end-of-file, etc.).
HTYPE
The type of the heading transmitted.
HLEN
The length in words "of the heading.
RTYPE
The type of record transmitted.
RLEN
The length of the record transmitted (positive if in words,
negative if in bytes).
HDATA
The heading data to be transmitted.
RDATA
The record data to be transmitted.

Glossary of Network Terms

In the course of reading this paper,a variety of terms will be used
in reference to the Network. Below are some of the most common terms.

Address, Network Address
A multi-field descriptor designating a specific target logical
location within the Network. A Network Address consists of
1) node/subnode code (PSD), 2) function, and 3) process.

Extra Data Segment {XDS)
Extra Data Segments refer to areas of memory which through another
MPE special capability, DS capability, may be created for storing
information, and in some cases, passing information between
processes MPE uses extra data segments for storing system tables
and file buffers, for example.

Forced Write
A method of forcing the disc¢ copy of a file to be current,
including (and most importantly) the label of the file.
It is the file label which contains the EOF (end of file)
information of a file, and which must be up-to-date if you
hope to recover fully from a system failure. A forced
write is performed via the MPE FCONTROL intrinsic.

Function (source or destination)
An identifier used to designate the application system
the data is coming from or going to. The Function is a
positive integer 0 to 32767. The meaning of the different
function values is left up to the user community. Both
the sender and receiver have a "function” defined. The
parameter used in the Network Procedures to specify the
sender’s function is SFUNC (source function). The
parameter used to specify the receiver’s function is
DFUNC (destination function). Function defines a Network
Address in much the same way as street name better defines
a geographic address.

Paper 3046 17

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 865

IrC
IPC refers to a specific type of MPE file, referred to as an IPC
{Inter-Process Communication) file or Message file. IPC files
have the unique property of acting as a first-in, first-out (FIFO)}
queue, making them very useful in inter-process communication.
Local
The LOCAL system is the system which you first log onto
and which issues the colon ":" as the MPE prompt.
Network

A collection of CPU’s (nodes) running the Network Software
package, connected together by DS lines. The Network is
divided into nodes, with DS lines running from node to node.
Much as the U.S. is a collection of states, the Network is
a collection of nodes.

Network Procedures
A set of user-callable procedures used for accessing the
Network. The Network Procedures are the applications
programmers’ only contact with the Network, and are contained
in the system SL in two Privileged MPE segments.

Node
A single HP 3000 CPU within the Network. A node is connected
to other nodes by DS lines. Each node can be divided into from
1 to 15 subnodes (one subnode, subnode 0 is required for
for each node and thus is not user-definable). Only one
copy of the Network Software is needed for a Node. Each
subnode within the node shares the same Network Software,
data base, and files. Node helps to define a Network Address
in much the same way state helps to define a geographic
address.

Node/Subnode Code
A four character code assigned to a specific node/subnode
combination. The Node/Subnode Code is used by the applications
programmer when specifying the Network Address of the
destination. The Network takes the four character code
and translates it to a binary value representing an
ordered pair of (node,subnode). The term Node/Subnode
code is used where the physical layout of the Network is
being described.

Non-destructive Read
One of the unique aspects of IPC files. Normally when a
record is read from an IPC file, it is automatically
deleted, so that the IPC file acts as a first-in, first-out
queue of records. When non-destructive read is enabled
(via the FCONTROL intrinsic), the first record of the IPC
file is read, but not deleted. Thus, you can obtain and
process the record, then post another read (a destructive
one) to delete the record, overlapping your processing
so that should there be a program or system failure, you

Paper 3046 18 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S5

may process the same record twice, but you would not
have a record “disappear' into the bit bucket.

Packet
A packet consists of the data the application wishes
transferred by the Network, the address of the sender,
the address of the destination, a packet ID number, a
time stamp, and many other items. The packet is the
unit of information which is passed within the Network.

Process (source or destination)
An identifier used in certain Network Procedures to
designate the program/process within the applications system
specified in “function"” that the data is coming from or
going to. '"Process" is a positive integer O to 32767.
The meaning of the different process values is left up to
the user community. Both the sender and receiver have a
"process" defined. The parameter used in the Network Procedures
to specify the sender’s process is SPROC (source process).
The parameter used to specify the receiver's process is
DPROC {destination process). Process defines a Network
Address in much the same way as house number better defines
a geographic address.

Process Handling
Process Handling refers to an MPE special capability. Process
handling allows a program {process) to create child
processes. These child processes must be activated by the parent
process in order to execute. The parent process may also suspend
the execution of the child process, or kill the child process.
All of these functions are provided to the programmer via several
MPE Intrinsics.

PSD
Processing System Designator. A four character code used
by the application programmer to tell the Network which
logical "system’” to use as the source or destination.
From the application programmer’s perspective, the Network
consists of many different PSD’s, each effectively on
its own CPU. Internally, up to 16 PSD’s reside on a
single CPU, as the PSD code is translated by the
Network Procedures into a {Node,Subnode) ordered pair.
In fact, PSD codes and Node/Subnode codes are one and
the same - the term PSD is used in logical descriptions
of the Network, and the term Node/Subnode code is used
in physical descriptions of the Network.

Remote
A REMOTE system is one which you access through the LOCAL
system and which issues the pound sign "#" as the MPE prompt.
REMOTE systems are further defined by their distance from the
LOCAL system.
A REMOTE once removed 1s a REMOTE directly connected to the LOCAL

6
Paper 304 19 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

system. A REMOTE system directly connected to a REMOTE once
removed is twice removed, etc.

RIN
RIN is an acronym for Resource ldentification Number - a method
available through MPE Intrinsics of controlling access to a
resource. RINs come in two flavors - Global, which can span
job/session boundries, and Local, which can only be shared by
processes within a given job/session.

Subnode
One of 16 logical "addresses”™ within a node. Subnode is
a required part of a Network Address. Subnode helps to
define a Network Address in much the same way as city or
county better define a geographic address.

Paper 306 20 WASHINGTON. D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

30L49. RSAM Survival Techniques

Dennis Scheil
Base 8 Systems, Ing¢.
21 Grist Mill Road
Belle Mead, N.J. 08502
(201) 874 - 8887

The focus of this paper is on KSAM files, how they work and why, sometimes
they 40 not work. This paper will NOT try to tell you that KSAM flat-out
does not work. It will not tell you to throw KSAM away and use IMAGE in all
circumstances ... including generic key processing! On the other hand, this
paper will not sell KSAM as the greatest thing since the integrated circuit,
nor will it attempt to convince you to give IMAGE the heave-ho and roll in
the KSAM files. As usual, the truth about KSAM is somewhere in the middle,
between <the extremes. This paper will give you some KSAM survival
techniques: first, the information you need to understand KSAM and the File
System; then ways of making KSAM work for you; next some comparisons between
KSAM and IMAGE and finally some ’tricks of the trade’ to make life with KSAM
much easier. As a side benefit, should you choose KSAM someday, this paper
may help you justify your selection to your peers and management when they
look at you in askance and say 'WHAT? You used KSAM??7°.

First, let’s take a look at the structure of a KSAM file. As is well known,
a KSAM file actually consists of TWO separate MPE files. The first, the DATA
file, is simply a standard sequential file; it doesn’t even have a special
file code. Records are stored in the data file ’chronologically’; that is,
in the sequence they were written. The only ’nonstandard’ feature of this
file is a ’user file label’ containing the name of the second file, the KEY
file. The key file, as the name implies, holds the key values for records in
the data file and the record addresses of these data records. It also
contains internal pointers to locate the next and previous key values; these
pointers are used to locate records by key and also for ’sequential’ access
to the data. Note that sequential access to a KSAM file is actually a
sequential reading of the KEY file, not the data file. The key entries are
arranged in a structure known as a 'B-tree’; the B-tree consists of levels of
key entries called 'key blocks’. These key blocks will be discussed later in
the paper.

The key file also contains control information such as the data file name,
number of file accesses, create and last access dates, definition of each key
and the KSAM end of file pointers for both files. This information may be
displayed using KSAMUTIL’s VERIFY function against a given KSAM file. The
key definitions or ’descriptors’ specify the data type for the key, Kkey
length, start position in the data record and a pointer to the ’root’ key
block in the B-tree.

The key file has a file code of 1080 (mnemonic¢ KSAMK) and is always a binary
file with 128 word, fixed length records. The file limit of the key file is
established by the File System when the file is created and igs not under user
control. The MPE end-of-file pointer is set zt the file limit, as it is with

Paper 3049 1

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

an IMAGE dataset; thus, the entire file is allocated at once. As with IMAGE,
KSAM maintains its own internal EOF for the key file.

Clearly, there are a number of linkages within the key file, and one for each
active data record between the key and data files. When a program accesses a
KSAM file, it is imperative that both files be kept current. The File System
handles the link and pointer maintenance in a special KSAM extra data
segment, or EDS. One KSAM EDS exists for EACH open KSAM file in the system.
The data segment contains a control and key descriptor ©block, a
working-storage area, the current data block buffer and from one to twenty
key block buffers. The extra data segment may be as large as 32K words, but
from 6 to 8K is typical for a single-key KSAM file. When the EDS is created,
12K of memory is allo- cated; if less space is required, the REAL memory
allocation is reduced while the VIRTUAL remains at 12K. If MORE than 12K are
required, the data segment is ’released’ (purged) and a new, larger one
created.

The control block portion of the KSAM EDS contains a copy of the control and
key information from the key file and is updated each time the file is acces-
sed. The Kkey file itself is only updated when the KSAM file is unlocked or
closed.

The data and key buffer blocks are refreshed or written as required. The
need for a new data buffer, for example, does not force a read of the key
file also., The buffer area is cleared whenever the file is locked, forcing
reads from disc, and changed data are posted to disc whenever the file is
unlocked or closed.

Thus, the important components of a KSAM file are:
1. The data file;
2. The key file - control and key descriptor areaj;
3. The key file - key blocks; and
4, The extra data segment created whenever a KSAM file is opened.
Let us now turn to the File System to explore the wonders of shared file
access, locking and buffer allocation.

The MPE File System permits three different types of shared access to sequen-
tial and KSAM files: SHR [;NOMULTI], SHR;MULTI and SHR;GMULTI. The ’SHR’
keyword simply permits more than one process to access a file concurrently.
The GMULTI, MULTI and default NOMULTI parameters specify the type of buffer
sharing to be in effect for a given accessor. Under GMULTI access, buffers
and pointers are shared between processes. MULTI access is similar to GMULTI
except that the sharing of buffers is permitted only within one job/session,
mainly useful in ‘’process handling® environments. NOMULTI access, the
default if neither MULTI nor GMULTI are specified, means that each process
maintains its own set of buffers for each open file. If four processes share
a file, under GMULTI (or MULTI) access, all would share the same buffer and
control block. If NOMULTI access were used, each process would have its own
buffer and control block. If three processes specified GMULTI and the fourth
opted for NOMULTI, two buffers would exist for the file; the first three
(GMULTI) processes would share one and the NOMULTI process would own the

Paper 3049 2 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

second buffer exclusively. Which access method is better, then? Well, it
depends on what the process wishes to do with a file.

Any time a file is shared and ANY process reads that file sequentially, DO
NOT USE GMULTI ACCESS! Under GMULTI, two programs reading the same file
simul- taneously will get exactly HALF the records each! Assuming both are
reading at the same rate, one program will get the ‘odd’ records and the
other the ‘even’ ones. The average system user will not understand what is
going on. The auditors will not be amused. Because GMULTI accessors share
the same control block, the ’current record pointer’ in the file is advanced
by BOTH processes, so after program A reads record 1, it advances the pointer
and program B gets record 2. Throw program C into the file doing RANDOM
reads and one suddenly realizes that GMULTI is not going to work here. So,
to save time, effort and lots of perspiration, use NOMULTI access when
reading any MPE or KSAM file sequentially.

The file system permits processes WRITING to a file to share it without any
locking whatsoever. Obviously, all processes must open the file for APPEND
access in this case. Here, GMULTI access is essential, sinc¢e all processes
MUST know where the current record pointer (EOF!) is and should share a
common buffer to prevent buffer collisions. Unfortunately for the KSAM user,
this ’unlocked append’ access 1is not available as KSAM forces either
exclusive access or locking before updating a file. The locking requirement,
which likewise assures current pointers and no buffer collisions, virtually
eliminates this need for GMULTI access to KSAM files. There is a way to make
GMULTI access work with simultaneous sequential and random processing,
however and we will geet to it after discussing one of the least understood
aspects of the File System, namely LOCKING.

In order to lock a shared file, it must have been opened with ’dynamic
locking enabled’, either by setting bit 10 of the ‘aoptions’ parameter to
FOPEN or by specifying the ’;LOCK’ parameter in a file equation for that
file. The COBOLII compiler generates the dynamic locking access option for
file having an EXCLUSIVE statement. Once a file has been opened with locking
enabled, ALL other accessors must do the same. Conversely, if the file has
been opened NOLOCK, +then subsequent accessors may not request dynamic
locking. Violators receive FSERR 48, *INVALID OPERATION DUE TO MULTIPLE FILE
ACCESS’, do not pass GO and do not collect $200. Ahhh. Now the system
analyst (and DP manager) can sleep at nights. Just spec¢ify ;LOCK on all
files and SHAZZAM! No more worries. Right? WRONG! The battle has Jjust
begun.

Once a shared file is open, there is NOTHING in the File System to prevent a
‘reader’ from accessing the file while another accessor has locked it! The
FLOCK intrinsic, the EXCLUSIVE statement, the CKLOCK and BKLOCK KSAM proce-
dures, even the old COBOLLOCK, NONE of these prevent other users from treading
a ’locked’ file. The only thing that the FLOCK intrinsic will do is prevent
ANOTHER FLOCK from succeeding! This does NOT mean that a two processes may
update the file simultaneously, since the dynamic locking option forces a
lock before an update. It DOES mean that there is no way of preventing a
*reader’ from accessing the very same record that another process is updating
UNLESS ALL READERS LOCK BEFORE READING! Why? The answer lies in the way the
File System ’locks’ a file.

Paper 3049 3

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

When the FLOCK intrinsic is called, either implicitly (EXCLUSIVE, CKLOCK} or
explicitly, the File System attempts to lock something called a GLOBAL RIN
(RIN stands for Resource Identification Number). A global RIN is assigned to
any file opened wih dynamic locking enabled. A process trying to lock the
file is actually trying to lock the global RIN assigned to that file, not the
file itself. If two processes attempt to lock the same RIN, the second pro-
cess will be impeded until the first releases the lock, unless CONDITIONAL
locking was specified. In that case, the second lock attempt will fail.
Once the file (RIN) has been locked, other processes wishing also to lock the
file will have to wait until the lock is released by a call to FUNLOCK. But
what happens if a process does not call FLOCK and just tries to read the file
while it is locked? NOTHING! The non-conforming program simply breezes past
the processes waiting patiently for the RIN, barges past the locking process
and waltzes away with an I/O buffer full of records, records which may or may
not be valid. The locked RIN did NOTHING to impede the non-locking process.

Should an application need to update TWO files simultaneously and wish to
lock both of them to ensure that they remain in synch, the usual result is
FSERR 64 USER LACKS MULTI-RIN CAPABILITY. The File System does not want to
lock two files at once and will prevent this from happening unless the
locking program is PREPped with MR (Multi RIN) capability. ’Fine’, you say.
’We’1ll just let all of our programmers have MR capability and let them lock
as they please. Right?’ WRONG, unless you are training your operations
staff on shutdown and startup procedures. Multi RIN capability is considered
by HP to be the second most dangerous special capability (right behind that
old devil, Privileged Mode) not because is breeches security or causes system
failures, but because it can create a situation known as ’deadlock’, from
which a system shutdown is the only recovery. Actually, consider it a
CONTROLLED SYSTEM FAILURE, controlled because it gives system management time
to tell users to log off but a system failure nonetheless because it forces
you to halt the system. The classic deadlock scenario: Process A has locked
File 1 but is prevented from locking File 2 because Process B has locked File
2 but is prevented from locking File 1 because Process A (repeat ad
nauseum).

The first rule of MR capability is: DON'T! unless you absolutely, positively
must. The second rule: If you’ve gotten this far, read rule 1 again. The
third rule: Well, if you insist, just remember that ALL PROCESSES MUST LOCK
FILES IN E X ACTUL Y THE SAME ORDER AND RELEASE THE LOCKS IN THE SAME
ORDER. Usually, installations follow the ASCII collating sequence, locking
file A before B before X. And then one day you hire a new programmer and
forget to tell her the locking sequence and her old employer used REVERSE
collating sequence locking . . . Murphy LOVES ’MR’ capability, but the use
of large numbers of KSAM or sequential files often need MR to keep the files
synchronized. Since IMAGE-based systems usually combine a number of files
into one database, they do not require MR as often; if you need to keep three
datasets in synch, just DBLOCK the whole database (mode 1 or 2). Of course,
if you need to lock two databases, or a database and a KSAM file, MR may be
the only way to go (although IMAGE does not use RINs, it respects the ’one
lock at a time’ rule). But, wherever possible, apply The First Rule of MR
and DON’T! To be successful, Multi RIN capability must be very well planned,
executed and controlled.

Paper 30L9 b WASHINGTON, D, C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

Let’s sum up the main points to consider in sharing MPE files between

processes:

1. Sharing a file is enabled using the SHR keyword in a file equation
or specifying the 'share’ access option to the FOPEN intrinsic;

2. A file may be accessed with SHARED buffers and pointers if it is opened
with GMULTI access. This is NOT advised for sequential readers;

3. Use of NOMULTI access means that each process has its own buffers and
control block for a shared file. This access mode may be dangerous if
processes are updating the file without locking and very questionable
if updates are occurring while other programs are reading the file
without locking it;

4. Locking is controlled not by physical locks to a file but rather by
using RINs (Resource Identification Numbers). When a process ’locks’

a file, it obtains the RIN for that file. Subsequent attempts to lock
the file will fail or be impeded until the lock is released. File
readers who do not lock before reading are NOT impeded; thus the lock
mechanism is not even close to fool-proof; thus

5. To ensure data and report integrity, ALL processes must lock a shared
file before performing ANY operation on that file unless GMULTI access
is used. In this case, extreme care must be taken to ensure data
integrity for the ’reader’ processes and locking is required for
sequential reads anyway; and

6. Locking more than one file at a time requires MR (Multi RIN) capability
which can be dangerous. Uncontrolled multi file locking WILL lead to
process deadlocks which require a system shutdown to clear.

It is readily apparent that the File System does not simplify multi-user
access to data files. Add in the complexity of KSAM and one begins to under-
stand the full import of HP’'s warning on sharing files:

'SHARING A FILE BETWEEN TWO OR MORE PROCESSES
MAY BE HAZARDOUS® (File System manual, p 5-16)

Now, let’s take a look at one of the important places where KSAM meets the
File System and examine the implications of GMULTI and NOMULTI access.,
Remem- ber that KSAM files require an extra data segment in addition to the
normal set of file buffers and control blocks for the key and data files.
When a SECOND process opens a shared KSAM file and GMULTI access is
specified, both users share the buffers, control blocks AND the KSAM data
segment. If NOMULTI access is requested, a new set of KSAM overhead must be
created. Now we have TWO extra data segments and two sets of buffers and
control blocks. If TEN users share the same file NOMULTI, then TEN data
segments are used. If each of the ten processes shares TWO KSAM files,
TWENTY DATA SEGMENTS ARE REQUIRED! No wonder that HP states: 'KSAM files can
use a lot of memory.’ (KSAM manual, p. B-17) The 20 data segments would, if
all were present in memory at the same time, use from 100K to 2LOK words of
memory, UP TO ONE-EIGHTH OF THE MAXIMUM AVAILABLE MEMORY ON A SERIES III
MACHINE, and ten users are not an unrealistic number for a Series III. Of
course, all of these segments would probably not be in memory at one time,
which implies a much greater workload for the Memory Manager as segments are
swapped out and rolled back in from disc. A Series III, with its single I/0
channel is now not just I/O bound, it is I/O swamped! Even a bLkL can get
shaken up by a big KSAM-imposed workload.

Paper 3049 5

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

The solution may well be CMULTI 4ccess; since there would be only one data
segment per file, much less memory would be used and that segment, shared
between several processes, would probably never be swapped out.
Unfortunately GMULTI doesn’t work with sequential access unless the file is
locked for the entire sequential read, or a special LOCK-START-READ-UNLOCK
technique is used. The former, a ’'long loc¢k’, would cut dramatically into
other users’ responseé times and is not Treally wviable. The
LOCK-START-READ-UNLOCK will work even with simultaneous sequential and random
processing. It entails some extra programming, but may be worthwhile in the
long run, especially if main memory is a problem and GMULTI access is the
solution.

Instead of using a simple READ {or COBOL ’READ ... KEXT) to retrieve records
sequentially, a sequence of commands is issued. A LOCK (EXCLUSIVE, CKLOCK or
FLOCK) is issued, followed by a START. The START uses the key of the last
record read and a relative operator of ’greater-than’. This positions the
KSAM logical record pointer at the next sequential record. The READ {or a
series of READ’s) is issued next, followed by an UNLOCK to relenquish the
file. If GMULTI access is to be used and a given KSAM file may not be locked
for more than a bufferful of records, this is the only way to access the file
sequentially. If this method is to be used, it is ESSENTIAL that all reader
processes lock the file before reading, as a pointer-moving call between the
LOCK and the READ would cause all kinds of grief. Two additional points to
consider are that after the file open, the key field should be primed with
low-values and that the EOF indication will come from the START, not the
READ.

A third solution, and probably the best one, is to give sequential processors
NOMULTI access to a file and use GMULTI for random and on-line accessors.
The MULTI/NOMULTI option is mix and match, allowing both types of access to
the same file at the same time, unlike the selection of dynamic 1locking,
where all accessors must agree. GMULTI file accessors will share a common
buffer amongst themselves and NOMULTI accessors will have individual buffers.

Note that the CKOPENSHR opens a KSAM file for ’SHR;LOCK [;NOMULTI]’.

Another, equally important consideration for sharing KSAM files is the use
and effect of locking. With sequential files, FLOCK doesn’t just lock the
file, it also clears the file buffers to force the next read to initiate a
transfer from disc. FUNLOCK flushes the file buffers, ensuring that the disc
has been updated before the next process accesses the file. KSAM files
require one additional step: the refreshing of the extra data segment. The
following quotes excerpts from the KSAM manual illustrate this additional
step (and make another strong point for file locking for all accessors):

'When FLOCK is executed, it clears all the buffers and transfers
the latest control information from the KSAM file to the buffers.
This ensures that any subsequent read of the file retrieves the
latest information from the disc rather than from the buffers.’
(KSAM manual, p 4-39)
'When FUNLOCK is executed, all output written while the file was
locked is transferred to the file [from the buffers] so that
other users have the most recent data.’ (KSAM manual, p 4-91)

Paper 3049 6 WASHINGTON, D. .

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

‘Because the current pointer position is not in a “common block™,
when several programs open the same file, each can alter the key
file structure by adding or deleting records so that pointers set
by other programs may point to the wrong record without those
other programs being aware of it.

'To make sure that the latest pointer position is stored with the
file rather than in the separate extra data segments, programs
that share the same KSAM file must use a locking scheme ..

[E]ach program should lock a KSAM file before executing any pro-

cedure that positions a pointer ... and not unlock the file until
all procedures that depend on this pointer position have completed
execution.’ (KSAM manual, p B-21)

Note that there are two kinds of pointers in an open KSAM file, the internal
key file pointers and the ‘'current record® pointer. BOTH of these are
critical to the integrity of any application accessing the file in a shared
environment. The meaning of the above excerpts is clear: a locking strategy
MUST be in place for ALL KSAM file accessors. If you are STILL not convinced
of the need to lock, even for read access, let the following sentence from
the KSAM manual and practical example do the job:

‘When a key file is searched for a particular record, the root
block and lower level blocks, AS NEEDED are moved to the key
block buffers in the [KSAM] extra data segment. (caps mine)

(KSAM manual, p B-17)

The data and key buffers are refreshed ONLY AS REQUIRED {and FLOCK will force
that requirement). If the file is not locked, the disc is not accessed until
either the key or data buffers do not contain the required record. Then,
ONLY THE BUFFER NEEDING THE DATA will be updated. To illustrate, program A
reads a KSAM file sequentially, displaying each record on a termainal and
pausing until the user indicates she has read the data. Then, the next
record is read and displayed. Program B also reads the file sequentially but
deletes them. Program A does not lock the file, program B locks before each
read and unlocks after the delete. In this example, program A is run and the
user is looking the first record in the file. Now, someone runs program B
and deletes all of the records in the file! What will happen to A when the
user asks to see the

next record? O0O000OOPS! The user GOT the next record, even though program B
had deleted it! In fact, UNTIL THE KEY BUFFERS ARE EXHAUSTED, PROGRAM A WILL
CONTINUE TO READ RECORDS AND DISPLAY THEM AS IF THEY WERE ACTIVE! If the key
buffers hold more entries than the data buffer (a likely occurrence) program
A will charge blithely on, even refreshing its data buffer with deleted
records. There will even be a delete flag in the first two bytes of each
record in subsequent data blocks! This scenario assumes NOMULTI access; had
GMULTI been in effect, program A would have found itself at end-of-file (more
or less correctly so), but program B would have skipped the first record in
the file. Had A requested a record in the middle of B’s deleting, it would
have gotten one from somewhere in the middle of the file and B would have
missed that one also! If both programs had used locking before reading (with
either GMULTI or NOMULTI) program A would hav c¢orrectly reached EOF on the
second read and B would have deleted all of the records. If A had requested

P oy
aper 3049 7 WASHINGTON, D. G.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

another record before B deleted all of them, A would have gotten the first
un-deleted record, but B would have been able to delete it afterwards.

This leads us again to the First Rule of KSAM:

ALL ACCESSORS OF A SHARED KSAM FILE SHOULD LOCK THE FILE PRIOR
TO ANY I/0 OPERATION, INCLUDING READS!

There is, of course, one exception to this rule; if no updates are being
performed and all users are accessing the file NOMULTI, 1locking is not
required.

There are two serious complications arising from KSAM’s stringent locking
requirements. First, if a system is I/0O bound before locking, it will be
even more so afterwards. Since FLOCK forces the next read to come from the
disc and FUNLOCK posts any modified buffers back to the disc, the blockfactor
of the data AND key files effectively becomes '1’. KSAM will exacerbate the
situation by requiring at least three I/0’s per read or write, two to the key
file and one to the data file. The reason that two I/0’s will be required to
update the key file is that the KSAM control information must be updated
also. Sequential file read processes may optimize a bit by reading more than
one record per file lock, but random readers and file update programs can not
be helped by this technique. A secure KSAM system will probably be I/0
bound.

The second problem concerns the co-ordination of locking when more than one
file must be locked. Since KSAM requires the locking of INPUT files, the
need for Multi RIN capability becomes acute, but the problems make its use
very unattractive. One solution may be to combine several KSAM files into
one; this approach would possibly reduce memory requirements also, but it has
the definite drawback of creating a bottleneck for system users. While
throughput suffers less with a bottleneck than with a deadlock, neither
option seems very palatable. Obviously, designing or implementing a
KSAM-based system requires special care and planning, most emphatically so
whenever MR capability will be required to lock more than one file at a time.

At this point, recognizing the flaws of KSAM, one might ask if it is worth
using it at all. IMAGE must be better in all cases, right?

First, it is not entirely KSAM’s fault. The design of the MPE File System is
not really satisfactory for the sharing of data between processes, especially
in a dynamic on-line environment. GMULTI access results in pointer ping-pong
but NOMULTI means big trouble if someone is updating at the same time. Still
the biggest problems occur while different types of access are occurring. If
a KSAM file is accessed entirely for update or solely for sequential reads,
no problems occur. Therefore, it is wise to consider some advantages of KSAM
over IMAGE and use it under ’controlled’ circumstances.

Typical uses for KSAM are extract files, tables and ’batch files’ used to
collect data on-line for subsequent batch database update. In all cases,
processing is well defined and well suited to KSAM. KSAM is much faster than
IMAGE for many types of processing. Slow IMAGE batch programs may be speeded
up significantly by using a utility program such as Robelle’s SUPRTOOL to
extract data from an IMAGE database into a KSAM file and then running against

Paper 3049 8

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREXSS

the extract instead. While it seems that much more overhead is involved, run
times may actually be cut in half and this includes the time required to
perform the extract! KSAM is equally well suited for tables systems,
especially those built around generic key processing.

Note that none of these functions involve the ‘core’ data of a system. KSAM
is NOT a wise choice, especially when several files are required and updates
must be performed against more than one at a time. There are many types of
’peripheral’ processing, however, for which KSAM is the logical choice.

Of course, none of this is very comforting to the MIS manager stuck with a
cranky KSAM system. There are steps, however, which may be taken to ensure
better throughput (and better OUTPUT!) without trashing the system and
rewriting it in IMAGE.

First: Make sure that ALL on-line update programs are using GMULTI access
to update the file. Then check the batch programs to make sure that
they are running NOMULTI. Make absolutely sure that any batch job
which may run against KSAM files when there is on-line activity
specifies SHR;LOCK in a file equation. Otherwise, you may not get
very far, either with the batch job or the on-line system.

Second: Check your locking stategies. 1If locks are being applied for update
only, you may need to restrict batch processing to certain hours of
the day. You may want to try rewriting the I/0 routines to make
sure that all locks are being applied correctly. Isolate those
programs which use MR capability and make sure that all locks are
applied in the same order. Make sure that all of these locks are
necessary and get rid of those that aren’t. 1If any batch programs
use MR and run during on-line access hours, change the jobstreams
to create extract files instead and get rid of the multiple locks.

Third: Set up two jobstreams, one called CRASH and the other called CLEAN.
CRASH will use KSAMUTIL’s KEYINFO function to check every KSAM file
in the system for structural damage after a system failure. Just
specify 'KEYINFO filename’, the RECOVER parameter is not necessary.
Then tell Operations to stream CRASH after EVERY system failure and
not to let anyone sign on until CRASH has finished. CLEAN will use
FCOPY to copy records to a sequential file and then back to the KSAM
file. This operation removes deleted records AND puts the records
back in key sequence. Even if you are reusing deleted record space,
the CLEAN step is necessary to put the records back in order.

Fourth: Keep a close watch on file capacities, ESPECIALLY if you are not
reusing record space. Don’t make the files too large, but be
generous.

KSAM may not be perfect, in fact it is very far from that, but there is no
reason to reject it in situations where it will work Jjust fine. Likewise,
unless the application is in very bad shape, a few changes to an existing
KSAM system may make life with KSAM a bit more livable.

Paper 3049 9 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

3050. TURBO PASCAL AND AGIOS ON THE HP150

Steve Porter, CDP
D P Systems
Box 34429
Memphis, Tennessee 28134

WHAT IS TURBO PASCAL

Pascal is the general-purpose high level programming language
originally designed by Niklaus Wirth of the Technical University of
Zurich, Switzerland. He named the language in honor of Blaise Pascal,
the French philosopher and mathematician.

Turbo Pascal is designed to meet the requirements of all
categories of users. It follows the definition of Standard Pascal as
defined by K. Jensen and N. Wirth in the "Pascal User Manual and
Report" quite closely. In addition to the standard, a number of
extensions are provided. Among these are:

» Absolute address variables * Bit/byte manipulation Direct
access to CPU memory and data ports Dynamic strings Free ordering of
sections within declaration part * Full support of operating system
facilities In-line machine code generation * Include files Logical
operations on integers Program Chaining with common variables Random
access data files Structured constants Type conversion functions

These extensions are what makes it relatively easy to access the AGIOS
subsystem.

WHAT IS AGIOS?

AGIOS stands for Alpha-numeric¢ Graphic¢s Input Output System. It
is a layer of software between BIOS (Basic Input/Output System and the
MS-DOS operating system. From MS-DOS AGIOS appears as a device
driver. It is designed to give you, the programmer, total high-speed
control over the HP150 without resorting to direct hardware-specific
calls and addresses. HP has made a commitment to maintain
compatibility in future systems in the series 150 line. The 110 does
not appear to be included in this commitment.

WHY SHOULD I USE AGIOS?

There are two general reasons why you might want to use AGIOS.
The first is speed, and the second is that there are some things that
there is just no other way to accomplish. According to HP specs the
standard console output rate is approximatly 700 characters per
second. AGIOS, on the other hand, allows console output as fast as

Paper 3050 1

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 S5

4000 characters per second. For approximately 1/3 of the functionms,
AGIOS is the only way you can do that function.

HOW TO ACCESS AGIOS FROM TURBO PASCAL

Because AGIOS is designed as a device driver, the AGIOS funétions
are all accessed through MS-DOS calls. Specifically, the 'I/0O Control
Write’ on the console device. This use of standard MS-DOS calling
conventions allows you to access AGIOS from Turbo Pascal by using the
standard procedure "MsDos". This procedure, which is one of the
extentions provided by Turbo Pascal:

1) allows you to set up a record with all of the data necessary
for an MS-DOS call, and 2) executes an interrupt 21
(function-request) call to MS-DOS.

The format of the record to be used by the procedure is:

REGISTERS = RECORD AX: INTEGER; BX: INTEGER; CX:
INTEGER; DX: INTEGER; BP: INTEGER; SI:
INTEGER; DI: INTEGER; DS: INTEGER; ES:

INTEGER; FLAGS: INTEGER; END;
The values for the registers are as follows:

AX := $4403; {The L4 tells DOS that this is a "I/0 Control Write’
The 03 tells the ’I/0 Control Write’ that it is to
write CX number of bytes from the buffer pointed to
by the DS:DX pair to the device control channel)

BX := 1; {The Handle of the device, in this case the console}

CX := length {The length of the buffer - see AX)

DX := offset {The offset of the buffer within the segment}

DS := gegment {The segment of the buffer}

If there iz a MS-DOS problem the carry-flag will be set and AX
will have a error number in it. The errors are:

1 = invalid function, 5 = access denied, 6§ = invalid handle,
and 13 = invalid data.

If the carry flag is not set and AX = 0 then an AGIOS error has
occurred. Normally the AX will return with the number of bytes
transferred. This covers the mechanics of the MS-DOS calls. Next we
will look at the nuts & bolts of how the buffers are laid out for each
function.

AGIOS - THE NUTS AND BOLTS

Paper 3050 2 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

All of the AGIOS functions are performed through the same MS-DOS
function. The only difference between the calls is the buffer that is
written to the device driver. Even though the format of the buffers
can vary widely in both layout and size, they all have some parts in
common. The general layout of the buffer is:

FUNCTION_BUFFER : RECORD FUNCTION SUBTYPE: BYTE;
FUNCTION TYPE: BYTE; the remainder of the buffer is
dependent on the function.

There are two FUNCTION TYPE’s. They are "0" for the Alpha/Numeric
functions and "1" for the Graphics functions. There are over 100
FUNCTION_SUBTYPE's distributed between the two function types. The
following is a list of all available functions:

----------- ALPHA/NUMERIC ---------=-2
Video intrinsics Keyboard intercept
* DEFINE AREA * DEFINE KEY CHARACTERISTICS
* WRITE AREA * GET KEY STATUS
* CLEAR AREA * PUT KEY
* ENHANCE AREA * KEYCODE ON/OFF
* READ AREA * KEYCODE STATUS
* SHIFT AREA * READ KEYPAD STATUS
* WRITE LINE
Application softkeys
Control functions * UPDATE SOFTKEY LABEL
EXECUTE TWO-CHARACTER SEQUENCE * READ SOFTKEY LABEL
POSITION CURSOR * DISPLAY SOFTKEY LABELS
DEFINE ENHANCEMENTS
CURSOR SENSE ABSOLUTE Touch screen functions
CURSOR SENSE RELATIVE DEFINE TOUCH FIELD
* SET CURSOR TYPE DEFINE SOFTKEY FIELD
* READ CURSOR TYPE DELETE TOUCH FIELD
* READ TERMINAL CONFIGURATION SET TOUCH SENSING MODES
* These functions do not have a equivalent escape sequence,
therefore are only available through AGIOS.
----------- GRAPHICS =~--------=~~
Display control Graphics plotting
CLEAR GRAPHICS MEMORY LIFT PEN
SET GRAPHICS MEMORY VECTOR MOVE ABSOLUTE
TURN ON/OFF GRAPHICS DISPLAY VECTOR MOVE INCREMENTAL
TURN ON/OFF ALPHANUMERIC DISPLAY VECTOR MOVE RELOCATABLE
TURN ON/OFF GRAPHICS CURSOR LOWER PEN
Paper 3050 3

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

TURN ON/OFF RUBBER BAND LINE
MOVE GRAPHICS CURSOR ABSOLUTE
MOVE GRAFHICS CURSOR RELATIVE
TURN ON/OFF ALPHANUMERIC CURSOR

TURN ON/OFF GRAPHICS TEXT MODE

Vector drawing mode

SELECT DRAWING MODE

SELECT LINE TYPE

DEFINE LINE PATTERN/SCALE

DEFINE AREA FILL PATTERN

FILL RECTANGULAR AREA ABSOLUTE

FILL RECTANGULAR AREA RELOCATABLE

SELECT POLYGONAL FILL PATTERN

SELECT BOUNDARY PEN

NO POLYGON BOUNDARY

SET RELOCATABLE ORIGIN

SET RELOCATABLE ORIGIN TO PEN
POSITION

SET RELOCATABLE ORIGIN TO CURSOR
POSITION

SET GRAPHICS TEXT SIZE

SET GRAPHICS TEXT ORIENTATION

TURN ON/OFF TEXT SLANT

SET GRAPHICS TEXT ORIGIN
GRAPHICS TEXT LABEL

DEFINE USER CHARACTER SET
SELECT DEFAULT CHARACTER SET
OUTPUT SINGLE CHARACTER

SET GRAPHICS DEFAULT

SET PICTURE DEFINITION DEFAULTS
GRAPHICS HARD RESET

INTEREX8S

VECTOR DRAW ABSOLUTE

VECTOR DRAW INCREMENTAL

VECTOR DRAW RELOCATABLE

SET PEN POSITION

TO CURSOR POSTION

POINT PLOT

SET RELOCATABLE ORIGIN TO PEN
POSITION

START POLYGONAL AREA FILL

TERMINATE POLYGONAL AREA FILL

POLYGON MOVE ABSOLUTE

POLYGON MOVE INCREMENTAL

POLYGON MOVE RELOCATABLE

POLYGON DRAW ABSOLUTE

POLYGON DRAW INCREMENTAL

POLYGON DRAW RELOCATABLE

LIFT BOUNDARY PEN

LOWER BOUNDARY PEN

Graphics status

READ DEVICE ID
READ PEN POSITION
READ CURSOR POSITION
READ CURSOR POSITION
WAIT FOR KEY
READ DISPLAY SIZE
READ GRAPHICS CAPABILITY
READ GRAPHICS TEXT STATUS
READ ZOOM STATUS
READ RELOCATABLE ORIGIN
READ RESET STATUS
READ AREA SHADING
READ DYNAMICS

* READ EXTENDED SCREEN DIMENSIONS

These functions do not have a equivalent escape sequence,
therefore are only available through AGIOS,

The folowing program shows how some of the AGIOS functions

may

be used.

A copy of this program and other routines to

access the AGIOS functions is in the INTEREX contributed

library on CompuServe.

using the Line Drawing Character Set.
use the ROMAN BOLD Character Set that can only be accessed

through the AGIOS functions.

The program will draw a ’calendar’
The program will also

The program demonstrates the

speed of the AGIOS functions by filling the screen, including
enhancements, in less than 1/2 of a second.

PROGRAM TESTINTR;

<ﬂﬂﬂﬂﬂﬂ*ﬂﬂ*ﬂﬂﬂ%ﬂﬂﬂﬂﬂﬂﬂﬂﬂllﬂﬂﬂﬂllﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂl%ﬂﬂﬂﬂﬂﬂ%ﬂﬂﬂﬂﬂlﬂﬂlﬂﬂﬂﬂﬂﬂlllﬂﬂﬂ

* This program tests some of the video intrinsics

%““ﬂﬂﬂ“ﬂﬂﬂ%ﬁﬂ%ﬂﬂﬂﬂﬂllﬂ%“ﬂl“l“ﬂ“%“ﬂ“ﬂ“%ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂlﬂﬂﬂﬂlﬂ“lﬂﬁlﬂ“ﬂﬁ“lﬂl)

Paper 3050 L

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

{Q”Q’Q”QQ”Q”’Q”QQ””Q””Q”QQQQ”””QQQQQ’Q’QQQQQ'QQ’&Q“’QQQ’Q’Q

" Copyright 1984 by Steve Porter, CDP *
* »

* Permission is granted for anyone to use these programs for private or*

* commercial use provided that the following notice is included: *
L2 »
»

» 'Portions of this program are copyrighted by Steve Porter 1985’
»

QQ”Q”Q’““”QQ’Q”’“Qﬁ'ﬁﬂ'ﬁﬁﬁﬁﬁ’ﬁ’ﬁﬁﬁﬁﬁﬁﬂ’ﬁ’ﬁ““ﬂﬁﬁﬁﬁ'ﬁ“’“ﬁ“”'ﬁﬂ“““”’}

(0’0QQQQQQGNQQQ“0’“0”’“”“’“QQ000“”’“QQQQQQQQQQ’ﬁ’““”“’““’ﬁ“”“”“”“

* Some general TYPEs needed by all routines *
QQﬁ“QQQ“”Q**Q*QQQ**ﬂ““*’ﬂ**ﬂﬂﬂ****’ﬂﬁ**ﬁ****Q’Q”“”’“”““*Q’Q”Q“Q’*’}

TYPE

REGISTERS = RECORD
AX,BX,CX,DX,BP,SI,DI,DS,ES,FLAGS: INTEGER;
END;

L2222 22 10 CT L2 2242]

{’“’Q’Q”’QQ’Q”””QQ*ﬁﬁ**ﬁ*Q””*ﬁﬂﬁ*QﬂQQQ’***ﬁﬂ*“’““““*ﬂ*ﬂﬁ““’““**’“’

* This function does an I/O Control operation and dumps the flags if *

* the operation fails
ﬂ*’**”““’*ﬂ**ﬁﬂ*’ﬂ*”’ﬁ*ﬁﬂ’ﬁﬂﬂ“ﬂﬂﬂﬂﬁ’*ﬁﬂ***““***Q**Q““ﬂ’**ﬂ*ﬁ*“ﬂ““ﬁ***)

PROCEDURE IO _CTL(VAR BUFF; LEN: INTEGER);

VAR
REG_PACK : REGISTERS;

BEGIN
WITH REG_PACK DO BEGIN
AX := $4403; {I/O CONTROL OPERATION}

BX := 1; {CONSOLE HANDLE (ALWAYS 1)}
CX := LEN; {BUFFER LENGTH }
DX := OFS{BUFF);
DS := SEG(BUFF);
END;

MSDOS(REG_PACK)

IF REG_PACK.FLAGS AND 1 <> O THEN BEGIN
WRITELN(SHNNBRRRRBBBERRRRRBRERNNNBRRRRRRNNRRBRRRNRNN NN);
WRITELN(’MSDOS ERROR ’);
WRITELN(’FLAGS: ', REG_PACK.FLAGS, * AX: ', REG_PACK.AX);
CASE REG PACK.AX OF

6: BEGIN
WRITELN(’Invalid Handle ’ };
END;
1: BEGIN
WRITELN(’Invalid Function ’);
END;
13: BEGIN

WRITELN(’Invalid Data ’)

Paper 3050 5

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

END;
%: BEGIN
WRITELN{ 'Access Denied ’};
END;
END;
WRITELN(IRRAARARARARAARAARAAARAARRARAARARAARRARAARARRARRRARARARR Y);
END
ELSE BEGIN
IF REG_PACK.AX <> O THEN BEGIN
WRITELN(
TRRRRRBARRBRRRARARARRAARARARAAARAARERRRRRRRRRRRNS T);
WRITELN(’AGIOS ERROR ’);
WRITELN('FLAGS: ’, REG_PACK.FLAGS, ’ AX: °,
REG_PACK.AX)3
WRITELN(
IRHRRARBRRARRRRABARNRARABARARARARAAARAARERAARAARNARE);
END;
END;
END;

ARARRARARBRRARARABRARABARARABRARARARARRARRARARRARARRARARRRRRARARRABRRRRRRRR R

{
* This routine and its variables are used to control where the *
* Graphics intrinsic output is to go. The Options are as follows *
* 0 - display to screen (default) *
* 1 - display to both sc¢reen and plotter *
» »

)

2 - display to plotter only

RRBRBRRRBRBBRRRRBRRBRRRRRRRRRRRRRAARBARBRARBRARARARABRARRABAARRBRAARARRRAN

VAR
PLT DEVICE: TEXT;
PLT_MODE: INTEGER;
PLT _ASSIGNED: INTEGER;
PLT_SCALE: INTEGER;

PROCEDURE PLOT*CONTROL(PLOT_TYPE: INTEGER };
BEGIN
IF PLT ASSIGNED = 1 THEN BEGIN
CLOSE(PLT_DEVICE);
END;
IF PLOT TYPE <> 0 THEN BEGIN
IF PLT_ASSIGNED <> 1 THEN BEGIN
ASSIGN(PLT DEVICE, 'PLT:’),
PLT_ASSIGNED := 1;
END;
REWRITE(PLT_DEVICE);
WRITE(PLT DEVICE, YING')
PLT SCALE := 20;
END;
PLT_MODE := PLOT_TYPE;
END;

{ﬂl***ﬂﬂ**ﬂ*ﬂﬂ***ﬂ*ﬂ**l**ﬂllllﬂ****Q**ﬂﬂ*****ﬂﬂﬂ*ﬂ**ﬂ*l*****ﬂ*****ﬂ*****

* Some general TYPEs used by the VIDEO INTRINSICS *

*ﬂ*ﬁ**********************ﬂﬂ************************“ﬂ**ﬂ**ﬂlﬂﬂ******i*)

Paper 3050 6 WASHINGTON, D. C.

BALTIMORE WA SHINGTON REGIONAL USERS GROUP INTEREX 8 S

TYPE
AREA POINT = REA DEF; { This is the TYPE returnmed to show the
previous area }

AREA_DEF = RECORD
LE_ROW,
LE COL,
UL_Row,
UL COL: BYTE;

END;

{kkklklkkkkklklkkklkkkkkkkkkkkkkl

* This function specifies the area to be operated upon by subsequent
area update operatioms.
INLR_ROW & INLR COL Defines the lower right cormer of the area
INUL_ROW & INUL _COL Defines the upper left cormer of the area

» % » % % B »

This function returns a buffer of type AREA_POINT that has the prev-

ious coordinates in it.

2
*
*
*
*
*
tttk**Rkt***tk*t**ttt**t**ktkttktktkkkkkkkkkkkkkkkt!Rt!k*ktkklkﬁkttklktl}

FUNCTION DEFINE_AREA(INLR ROW, INLR COL, INUL_ROW, INUL COL : BYTR }:
AREA_POINT;

VAR
OLD AREA : AREA POINT;

DEFINE AREA_BUFFER : RECORD
FUNCTION SUBTYPE: BYTE;

FUNCTION‘TYPE : BYTE;
LR _COL : BYTE;
LR_ROW : BYTE;
UL _CoL : BYTE;
UL_RoW > BYTE;
PREV_CORDS : AREA POINT;
END;
BEGIN

NEW(OLD_AREA);
DEFINE_AREA_BUFFER.FUNCTION SUBTYPE := 1;
DEFINE_AREA_BUFFER.FUNCTION TYPE := 0;
DEFINE_AREA_BUFFER.LR COL := INLR_COL;
DEFINE_AREA_BUFFER.LR_ROW := INLR_FOW;
DEFINE_AREA_BUFFER.UL COL := INUL_COL;
DEFINE AREA_BUFFER.UL FOW := INUL ROW;
DEFINE_AREA_BUFFER.PREV_CORDS := OLD_AREA;
10 _CTLT DEFINE_AREA BUFFER, 10);
DEFINE_AREA := OLD_AREA;

END; { DEFINE_AREA }~

{kkkttt#kkkkkkkkkkﬂkkkkkkkkkkkk!kkkkkﬂkikkkkk‘k*#**k!kkkkiﬁt*ii#i!*#ﬂkk#l
* This function writes a single row (or part of a row) in the workspace.”

* Unlike Write Area, THIS INTRINSIC IGNORES THE AREA BOUNDS SET BY DEFINE
* AREA. 1If the position and length of the data are defined such that the

Paper 3050 7 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S%

* right workspace boundary is violated that portion of the data exceeding
* the boundary is ignored. No line wrap occurs.

INROW & INCOL Define the position that the data will be written
BUFF_LENGTH Defines the length of each of the following buffers
EN_BUFFER Is a buffer with the enhancement data for each
display position. The enhancement characters are
same as used in the escape programing i.e. A for
blinking, B for inverse video, C for blinking and
inverse video, ect.

Is the buffer with the character set code for displa
position. There are § character sets. The codes
are as follows: @ = Normal Roman

A = Line Drawing

B = Bold Face Roman
C =
D =

CHS_BUFFER

Itallic Roman
Math
Space = No Change
INBUFFER The data to be displayed

k**k******************k*********k*k*kk*********k**ktttlkt**kt*kttlkt*ktt}

B % B B B3 % B B BN BN B BB N
B % % % % B % BT B X B N X B X »

PROCEDURE WRITE LINE(INROW, INCOL, BUFF LENGTH: INTEGER;
VAR EN_BUFFER, CHS BUFFER, INBUFFER);

VAR
WRITE_LINE BUFFER : RECORD
FUNCTION SUBTYPE : BYTE;
FUNCTION_TYPE ! BYTE;
COL : BYTE;
ROW ¢ BYTE;
BUFFER LENGTH : INTEGER;
ENH BUFFER OFS ¢ INTEGER;
ENH BUFFER SEG ¢ INTEGER;
CHR BUFFER OFS ¢ INTEGER;
CHR BUFFER SEG : INTEGER;
DATA_BUFFER_OFS : INTEGER;
DATA_BUFFER SEG : INTEGER;
END;
BEGIN

WRITE LINE BUFFER.FUNCTION TYPE := 0;

WRITE LINE_BUFFER.FUNCTION SUBTYPE :
WRITE_LINE BUFFER.ENH_BUFFER SEG :
WRITE LINE BUFFER.ENH BUFFER OFS :
WRITE_LINE BUFFER.CHR BUFFER SEG :
WRITE LINE BUFFER.CHR_BUFFER OFS :
WRITE_LINE BUFFER.DATA BUFFER SEG
WRITE LINE BUFFER.DATA BUFFER OFS :
WRITE LINE BUFFER.BUFFER LENGTH :=
WRITE LINE BUFFER.ROW := INROW;
WRITE LINE BUFFER.COL := INCOL;
10_CTL(WRITE_LINE_BUFFER, 18);
END;”{ WRITE_LINE }

Paper 3050 8

(= 75
SEG(EN_BUFFER);
OFS(EN _BUFFER);
SEG(CHS_BUFFER);
OFS(CHS BUFFER);

:= SEG(INBUFFER);

;= OFS(INBUFFER);
BUFF_LENGTH;

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8%

fk**kk*****************************k***k**k***k****k**k*******kk*k**k**k

* This procedure Writes data into the area defined by define area *
* See WRITE LINE *

**********k?**k*k************************t***********tt*t**t**t********}

PROCEDURE WRITE AREA(DATA_LENGTH: INTEGER;
VAR ENH _BUFFER, CHS BUFFER, IN_BUFFER);

VAR
WRITE AREA BUFFER ¢ RECORD
FUNCTION SUBTYPE : BYTE;
FUNCTION TYPE : BYTE;
BUFFER _LENGTH : INTEGER;
ENH BUFFER OFS : INTEGER;
ENH . BUFFER SEG : INTEGER;
CHR BUFFER OFS : INTEGER;
CHR_BUFFER_SEG : INTEGER;
DATA_BUFFER OFS : INTEGER;
DATA_BUFFER SEG : INTEGER;
END;
BEGIN

WRITE AREA BUFFER.FUNCTION TYPE := 0;
WRITE AREA BUFFER.FUNCTION SUBTYPE =25
WRITE ARE'A BUFFER.BUFFER LENGTH : DATA__LENGTH;
VRITE AREA | " BUFFER.ENH . BUFFER OFS := OFS(ENH BUFFER);
WRITE AREA BUFFER.ENH_ BUFFER SEG := SEG(ENH BUFFER);
VRITE_AREA_BUFFER.CHR_BUFFER_OFS := OFS(CHS BUFFER);
WRITE AREA BUFFER.CHR BUFFER SEG := SEG(CHS BUFFER);
WRITE AREA BUFFER.DATA BUFFER OFS := OFS(IN _BUFFER);
WRITE_AREA BUFFER.DATA BUFFER SEG := SEG(IN_BUFFER);
I0 CTL(VRITE AREA BUFFER, 16);

END; { WRITE AREA }

“ [] “

{***k*****kk****k*********k*kk****k*******k***********k**k*k******

* This procedure clears the area defined by the last DEFINE AREA *

*********k**k****************k**********k**k***k***k**k*k*k?*****}

PROCEDURE CLEAR AREA;

VAR
CLEAR_AREA BUFFER : RECORD
FUNCTION SUBTYPE : BYTE;
FUNCTION_TYPE : BYTE;
END;
BEGIN

CLEAR _AREA _BUFFER.FUNCTION TYPE := 0;
CLEAR AREA BUFFER FUNCTION _SUBTYPE := 3;
I0 CTL(CLEAR AREA_BUFFER, T2);

END;

Paper 3050 9 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

{tlt!!!!llllRRRRRRRRRRRRRRRRRRRRRRRkRR*RRRRRR!RRRR*RR*RRRRRRRRRRR*RRR}}}R

* This procedure sets the enhancement for the current area defined by the
* last DEFINE AREA. See WRITE LINE for enhancement types.

Rktttttt**ktttt***kﬁk********R*********k*#**************k*lklktt*k**ttkt}

PROCEDURE ENHANCE AREA(BNHANCE TYPE: BYTE J;

VAR
ENHANCE AREA BUF : RECORD
FUNCTION_SUBTYPE : BYTE;
FUNCTI ON_TYPE : BYTE;
FILL BYTE : BYTE;
ENHANCE_BYTE : BYTE;
END;
BEGIN

ENHANCE AREA BUF.FUNCTION TYPE := 0
ENHANCE_AREA BUF FUNCTION_ “SUBTYPE :
ENHANCE " AREA BUF ENHANCE BYTE := ENHANCE TYPE;
IO CTL(ENHANCE AREA BUF 4);

END;

{}lkkt}t!k!}k*klk}k*k}kkk}k}k}#}Ak*k}**k}!k}l!!!!Rtt*i!k*kl*lk}il!*

* This procedure is used to input the contents of the area to the *
* program. See WRITE LINE. *

##RR****k!i!k*t}k}k**?*Rkﬁ!k}}ll!l!!k}tk}tl*l}}Ai!k}k}}}tk*tkik*}l;

PROCEDURE READ AREA(DATA_LENGTH: INTEGER;
VAR ENH_BUFFER, CHS_BUFFER, IN BUFFER);

VAR
READ AREA BUFFER : RECORD
FUNCTION SUBTY PE : BYTE;
FUNCTION TYPE : BYTE;
BUFFER LENGTH : INTEGER;
ENH_BUFFER_OFS : INTEGER;
ENH_BUF FER__SEG : INTEGER:
CHR_BUFFER__OFS : INTEGER;
CHR_BUFFER SEG : INTEGER;
DATA_BUFFER OFS : INTEGER;
DATA__BUFFER__SEG : INTEGER;
END;
BEGIN

READ AREA BUFFER.FUNCTION TYPE := 0

READ AREA BUFFER.FUNCTION SUBTYPE := 5;

READ AREA BUFFER.BUFFER LENGTH := DATA _LENGTH;

READ_ AREA BUFFER.ENH_BUFFER OFS := OFS (ENH BUFFER J;
READ_ AREA BUFFER.ENH_ BUFFER SEG := SEG(ENH BUFFER)5
READ_ _AREA_. |_BUFFER. CHR_ BUFFER OFS := OFS(CHS . BUFFER);
READ_ AREA BUFFER.CHR BUFFER SEG := SEG(CHS_BUFFER J:
READ AREA” _BUFFER. DATA BUFFER OFS := OFS(IN BUFFER);
READ AREA_ " BUFFER. DATA BUFFER _ SBG := SEG(IN _BUFFER);

Paper 3050 10

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

I0_CTL{ READ_AREA BUFFER, 16 J;
END;™{ READ AREA }

{)*#k‘k‘#ktlk‘klklktlk‘k‘k‘lkt#k‘k)k‘k‘****kk‘k‘#k‘k‘k‘#k}k‘klk‘lk‘k}’k##
* This procedure shifts the data in the pre-defined display area.

* Enhancments and character set are shifted with the ASCII data. Data
* shifted off an edge of the update area is lost.

» B % B » % »

* For DIRECTION the following is used: 0 = Up

* 1 = Dowm

* 2 = Left

* 3 = Right

* The DISTANCE is the number of Rows or Columms to be shifted *
L3

The BUFFERs are used in the remmaining unshifted area. See WRITE LINE

*tl*k*****tiii*ttk****ii*i***tiiliii****tittti**i*ii*iiiti****ii*i*i*i*i}

PROCEDURE SHIFT AREA{ DIRECTION, DISTANCE, DAT'A LENGTH: INTEGER;
VAR ENH_BUFFER, CHS_ BUFFER, IN_BUFFER);

VAR
SHIFT _AREA BUFFER : RECORD.
FUNCTION SUBTYPE : BYTE;
FUNCTION TYPE : BYTE;
BUFFER LENGTH : INTEGER;
ENH _BUFFER OFS : INTEGER;
ENH BUFFER SEG : INTEGER;
CHR BUFFER OFS : INTEGER;
CHR BUFFER SEG : INTEGER;
DATA BUFFER OFS : INTEGER;
DATA_BUFFER SEG ¢ INTEGER;
DIST : BYTE;
DIRECT : BYTE;
END;
BEGIN

SHIFT AREA BUFFER.FUNCTION_TYPE := 0;
SHIFT A.REA BUFFER. FUNCTION SUBTYPE := 6;
SHIFT A.REA BUFFER.DIST := DISTANCE;
SHIFT_AREA_BUFFER .DIRECT := DIRECTION;
SHIFT AREA_BUFFER.BUFFER LENGTH := DATA LENGTH;
SHIFT AREA BUFFER.ENH BUFFER OFS := OFS(ENH BUFFER);
SHIFT AREA BUFFER.ENH_BUFFER SEG := SEG(ENH BUFFER);
SHIFT AREA BUFFER.CHR BUFFER OFS := OFS(CHS BUFFER);
SHIFT AREA_BUFFER.CHR BUFFER SEG := SEG{ CHS BUFFER);
SHIFT AREA_ | BUFFER. DATA BUFFER OFS := OFS(IN BUFFER J;
SHIFT AREA_ | BUFFER. DATA_, BUFFER SEG := SEG(IN__ “BUFFER J;
I0 CTL(SHIFT AREA BUFFER, 18);

END; { SHIFT _ AREA }

{l*ﬁ)l*ttl**lt##ttttttk**k**t****t&*i***l**l*****t**t***t*****i*t*****

* This procedure is the equivalent of the 2 Char Escape Sequences *
* Any operation characters are valid except for those that returm *
* data. For example if you use a INCODE of 'H' the cursor will home *

0 5
Paper 3050 11 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 S

* up. See the 'HP 150 Terminal Users Guide - Appendix A' for a stt *
* valid codes.

*tttttttttt***#*t*****tt******t******t*****tttt**************t****tt*,

PROCEDURE TWO _CHAR SEQ(INCODE: CHAR);

VAR
TWO_CHAR SEQ BUFFER: RECORD
FUNCTION SUBTYPE : BYTE;
FUNCTION_TYPE : BYTE;
OP_CODE ¢ CHAR;
END;

BEGIN
TWO_CHAR SEQ_BUFFER.FUNCTION TYPE := 0;
TWO_(" CHAR . SEQ "~ BUFFER.FUNCTION SUBTYPE := 16;
TWO _CHAR SEQ "~ BUFFER.OP > CODE := INCODE;
I0 CTL(Two CHAR SEQ_. BUFFER, 3);

END;

{*t**#tttttt*t*tttttt*ttt*t*tttt****ttttttttttttttt*ttt**tttttt*tt*t*

* This procedure will return the absolute cursor position *
tttt*ktttt*tt*ttt*ttttttttt*ttttttttt**ttttt***tt***tt*tttt***tt’

PROCEDURE CURSOR_SENSE_ABS(VAR CURS_ROW, CURS COL: INTEGER);

VAR
CURSOR_BUFF > RECORD
FUNCTION SUBTYPE : BYTE;
FUNCTION TYPE : BYTE;

CURSOR_POS OFS : INTEGER;
CURSOR_POS_SEG : INTEGER;

END;

CURSOR_POS ¢ RECORD
CURSOR COL : INTEGER;
CURSOR_ROW : INTEGER;

END;

BEGIN

CURSOR_BUFF . FUNCTION_TYPE := 0;
CURSOR_BUFF . FUNCTION SUBTYPE := 19;
CURSOR_BUFF.CURSOR_FOS_SEG := SEG(CURSOR POS);
CURSOR_BUFF .CURSOR_POS_OFS := OFS(CURSOR_FOS);
10_CTLT CURSOR BUFF, 6);
CURS ROW := CURSOR_POS.CURSOR_ROW;
CURS_COL := CURSOR_POS.CURSOR COL;

END;

{ttt*t**ttt***tttttttttttt*t*tttt***ttt*tt*t*tttttttttt**ttttt*#ittt*

* This procedure will return the relative cursor position *
ttttt**t*ttttt***ttt**tttt*t#ttt**tt***t*tt***tt**tttt***ttt**tt*t*t’

Paper 3050 12

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

PROCEDURE CURSOR_SENSE _REL(VAR CURS_ROW, CURS COL: INTEGER);

VAR
CURSOR BUFF : RECORD
FUNCTION SUBTYPE : BYTE;
FUNCTION TYPE ! BYTE,

CURSOR_POS_OFS : INTEGER;
CURSOR_POS_SEG ~ : INTEGER;

END;

CURSOR _POS s RECORD
CURSOR COL : INTEGER;
CURSOR_ROW > INTEGER;

END;

BEGIN

CURSOR_BUFF .FUNCTION TYPE := 0;

CURSOR_BUFF . FUNCTION SUBTYPE' := 205

CURSOR BUFF .CURSOR _ POS SEG := SEG(CURSOR POS);
CURSOR_BUFF. CURSOR POS "OFS := OFS(CURSOR_POS);
I0 CTL(CURSOR _ BUFF, 6);

CURS__HOV ;= CURSOR POS.CURSOR ROW;
CURS COL := CURSOR POS. CURSOR COL;
END;

{k)t*)R)t)t*)t*)))t*xt*)*t**)t*********k######kt*ttk*tkttttttttttt**)

* This procedure is used to set the alpha cursor type. A CURS_TYPE *

* of 0 = Underscore and 1 = Inverse Cell. *
)*)***)*t**********)*)**)**)*)*)****)*)*****)#*k*k*k*tk#*)k*)*)k*t**}

PROCEDURE SET_CURSOR_TYPE(CURS_TYPE: BYTE);

VAR
SET CU RSOR BUFF : RECORD
FUNCTION SUBTYPE ! BYTE;
FUNCTION TYPE : BYTE;
CURSOR TYPE v BYTE;
FILL BYTE > BYTE;
END;
BEGIN

SET_CURSOR_BUFF.FUNCTION TYPE := 0;
SET CURSOR BUFF . FUNCTION SUBTYPE = 21
SET” CURSOR _BUFF .CURSOR TYPE : = CURS TYPE;
IO_CTL(SET_CURSOR_BUFF , 4),

END;

TYPE CHAR BUFF = ARRAY[1..40] OF CHAR;

TYPE BUILD SCREEN = ARRAY[0..45] OF CHAR BUFF;
TYPE SCREEN = ARRAY[0..23,0..79] OF CHAR;
TYPE BLOCK = ARRA.Y[l..5,1..10] OF CHAR;

Paper 3050 13 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

VAR
CHAR BUFFER: BUILD_SCREEN;
CHAR TYPE: BUILD_SCREEN;
CHAR_ENHANCE : BUILD_SCREEN;
OLD_AREA: AREA_POINT;
SCREEN_AREA: SCREEN ABSOLUTE CHAR BUFFER;
SCREEN_TYPE: SCREEN ABSOLUTE CHAR TYPE;
SCREEN_ENHANCE: SCREEN ABSOLUTE CHAR ENHANCE;
DAY BLOCK: BLOCK;
DAY OF WEEK: BYTE;
DAY OF_MONTH: BYTE;
WEEK OF_MONTH: BYTE;
DAY HOLD: STRING[2];
TPOINT: BYTE;

PROCEDURE FILL_DATE BLOCK(BLOCK ROW, BLOCK COL: BYTE;
BLOCK DATA: BLOCK);

VAR X, Y: INTEGER;

BEGIN
FOR X := 1 TO 10 DO BEGIN
FOR Y := 1 TO 3 DO BEGIN
SCREEN_AREA[(((BLOCK_ROW * 4) - 2) +Y),
(((BLOCK COL * 11) - 11) + X)]
BLOCK DATA[Y, X];
END;
END;
END;

PROCEDURE DISPLAY DATE BLOCK(BLOCK ROW, BLOCK COL: BYTE);

BEGIN
WRITE_LINE(((BLOCK ROW * 4) - 1), ((BLOCK COL * 11) - 10), 10,
SCREEN_ENHANCE(((BLOCK_ROW * 4) - 1), ((BLOCK_COL * 11) - 10)],
SCREEN_TYPE[((BLOCK_ROW * 4) - 1), ((BLOCK COL * 11) - 10)],
SCREEN_AREA[((BLOCK_ROW * 4) - 1), ((BLOCK COL * 11) - 10)]);
WRITE_LINE((BLOCK_ROW * 4), ((BLOCK COL * 11) - 10), 10,
SCREEN_ENHANCE[(BLOCK ROW * 4), ((BLOCK COL * 11) - 10)],
SCREEN_TYPE[(BLOCK_ROW * 4), ((BLOCK_COL * 11) - 10)],
SCREEN_AREA[(BLOCK_ROW * 4), ((BLOCK_COL * 11) - 10)]);
WRITE_LINE(((BLOCK_FOW * 4) + 1), ((BLOCK COL * 11) - 10), 10,
SCREEN_ENHANCE[((BLOCK ROW * 4) + 1), ((BLOCK COL * 11) - 10)],
SCREEN TYPE[((BLOCK ROW * 4) + 1), ((BLOCK COL * 11) - 10)],
SCREEN_ARBA[((BLOCK_ROW * 4) + 1), ((BLOCK COL * 11) - 10)]);

END;

BEGIN
CHAR BUFFER[0] := ' JU';
CHAR BUFFER[1] := 'NE '
CHAR_ENHANCE[0] := ' BBB';
CHAR_ENHANCE[1] := 'BBB "
CHAR TYPE[0] = = '@EQEQEEECOEOEEEEEQACRE000C080E00000000CE" ;

Paper 3050 14

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

CHAR TYPE[1]
CHAR_BUFFER[2]

CHAR ENHANCE[2] :

CHAR TYPE[2]
CHAR BUFFER[3]

CHAR ENHANCE[3] :

CHAR TYPE[3]
CHAR BUFFER[4]

CHAR ENHANCE[4] :

CHAR TYPE(4]
CHAR BUFFER[5]

CHAR ENHANCE([5] :

CHAR TYPE[5]
CHAR BUFFER[6]

CHAR ENHANCE[6] :

CHAR TYPE[6]
CHAR BUFFER(7]
CHAR ENHANCE[7])
CHAR TYPE[7]
CHAR BUFFER([8]
CHAR ENHANCE[B]
CHAR TYPE[8]
CHAR _BUFFER([9]
CHAR_ENHANCE([9] :
CHAR TYPE[9]
CHAR BUFFER[IO]

t

CHAR ENHANCE[10] :

CHAR TYPE[10]
CHAR BUFFER[11]

CHAR ENHANCE[11] :

CHAR TYFE[11]
CHAR BUFFER[12]

CHAR ENHANCE[12] :

CHAR TYPE[12]
CHAR BUFFER[13]

]

CHAR ENHANCE[13] :

CHAR TYPE[13]
CHAR BUFFER[14]

CHAR _ENHANCE[14] :

CHAR TYPE[14]
CHAR BUFFER[15])

CHAR ENHANCE[15] :

CHAR TYPE[15]
CHAR BUFFER[16]

CHAR _ENHANCE([16] :

CHAR TYPE[16]
CHAR BUFFER[17]

CHAR ENHANCE[17] :

I

CHAR TYPE[17]
CHAR BUFFER[18]

CHAR ENHANCE[18] :

CHAR TYPE[18]
CHAR BUFFER[19])

CHAR_ENHANCE([19] :

Paper 3050

I3
=

L2
[]

S
=
'=
=
'=
=

[S N B DA R DR R R D B N B e

e oa e o e oo .
| I N TR R R NN B BN RN BN)

' @@ 's
SUN MON TUS VE"
'@@"
'BB"
‘D THU PRI SAT 3
'@@"
' BB' ;
TP SFSRSINT OSSN ISNNE HNNSEII TR
' (RRRRRAAELEALRAEALARAALLACLALARACRAACRAREEARA" ;
" AA ;
55 ,”’,’,,,’#;;;;;;;;;;#)’)),”,,) ;
' QREALRACALLRRAAELAARAALELRAAAACRAAARAAARRACARA' ;
' AAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA' '

'@@'-
Y A A A ¥
'@@'-
A A A A
'@@'-
‘A A A A '
| 080000EE0AEE0AEE00AE00AA000000A0A0080000"
' A A A A ';
'@@'-
A A 's
'@@'-
4 A A a4 '

! / / / !
* 999955959959/ 9399595959959 399995995993/ 3533953 ’

' @eeeRLLALRRLRLLALCRALRLLAACRLALRALCRRCRRARCRRRRR ' ;
' AAAAAAAAAABAAAAAAAAAAAAAANANAAAAAAALAAAA' ,'

”

’

r
’,”/,”’JJJ”’/”JJ””,’/’JJ’J”JJ’

' 000CECARCECEE0AEER000000A00000000000000Q" ;
' AAAARAAAARAAAARAAAARAAAARAAARRAARAALA. '
| 0060000EA0EE00800006000E0000000080000800" |
' A A 4 '
'@@@@é@@@@@@@@@@é@@@@@@@@@@é@@@@@@@@@@é@@'}
A) A a
'@@'
‘4 4 ¥

. 14 '

,
]

. e

L
2

.o

e Wy e

'@@';

A A’
'@@'
'A A *

! @@ !

e Wy Be Wa @

15

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

CHAR TYPE(19]
CHAR_BUFFER[20]
CHAR ENHANCE[20) :
CHAR TYPE[20]
CHAR BUFFER[21]

}

'

t

CHAR ENHANCE[21)] :

CHAR TYPE[21])
CHAR BUFFER[22])

t

}

CHAR ENHANCE[22] :

CHAR TYPE[22]
CHAR BUFFER[23]

t

}

CHAR ENHANCE[23] :

|

CHAR TYPE[23]
CHAR BUFFER[24]

t

t

CHAR ENHANCE[24] :

}

CHAR TYPE[24]
CHAR BUFFER[25]

CHAR ENHANCE[25] :

CHAR TYPE[25)
CHAR BUFFER[26]

CHAR ENHANCE[26] :

t

CHAR TYPE[26]
CHAR BUFFER[27]

i

¢

CHAR ENHANCE[27] :

t

CHAR TYPE[27]
CHAR_BUFFER/ 28]

CHAR ENHANCE[28] :

CHAR TYPE[28]
CHAR_BUFFER[29]

CHAR_ENHANCE[29] :

CHAR TYPE[29)
CHAR BUFFER[30]

CHAR ENHANCE[30] :

CHAR TYPE([30]
CHAR_BUFFER[31]

CHAR_ENHANCE[31] :

CHAR_TYPE[31]
CHAR_BUFFER[32]

CHAR ENHANCE[32] :

CHAR_TYPE[32]
CHAR BUFFER[33]

CHAR ENHANCE[33] :

CHAR TYPE[33]
CHAR_BUFFER/ 34]

CHAR ENHANCE[34] :

CHAR TYPE[34]
CHAR BUFFER(35]

CHAR ENHANCE[35] :

CHAR _TYPE(35]
CHAR_BUFFER[36]

CHAR ENHANCE[36] :

CHAR TYPE[36]
CHAR _BUFFER(37]

CHAR_ENHANCE[37] :

Paper 3050

e s va ve b4 . el e . v e oo . e. e oo e oe .. ve e e. . e . oo s s e va e we se 4. e, e .. o e
B8 W # N RN N H DR HE W R R # N W W NN ® W RN W R N ® MR N B R NRE NN H N R NH H LI]

A 4 A 4 ’;
1.
)))’/,),)),,,,’/),,),,,),,/,,,))) ’

' I ER BN N

' 0@0EEEEEEEACARACCCACEEERAALEEAEEEEERRRRA' ;
' AAAAAAAAAAAAAAAAAAAAAAAARAAAAAANAAAAAAAA ;
',,,,/,,,,,,,,))/,,,,,),,,,/,.’,’,,,,,," v;

’@@';
'AAAAAAAAAAAAAAAAAAAA!WIAAAAAAAAAAAAAAA ,
'@@"
'A ,
’@@';
A A A ,
'@@"
'A A A A s
’@@@@é@@@@@@@@@@é@@@@@@@@@@é@@@@@@@@@@é@@'}
A A A A ,'
’@@"
A A A H
’@@';
! A A A a4 ';

12 / L
-,),,,:),,3/355,:,,:,: ,),,,,,,:,/:,,,,, 5

' eeeeeQeeeAreRReCereReRRRRRRCRReRAARECREA ;
| AAAAARAARARRAARANAAAAARANAARARLARAARALA ;
,)))/),,),,,,3)/,,,,,,,),:/,:,,:,,,,,")

' 66020000aE0000000000A00E00000000000000C " ;
' AAAAAARAAAARRAAAARAAARARAAAARAARAAAAAA ' ;

t

1

'

'@@'-
'4 A ,
'@@';
A A A '
'@@'-
"A A A A s
'@@@@é@@@@@@@@@@é@@@@@@@@@@é@@@@@@@@@@é@@'2
A A ,‘
'@@'-
'A A Yy
.
' A A A a4 ';
",,’,,,,”’/,,),,,,,,)/,,,,,,),,,/,,,,,,';

jccdeddeedaaeeddeddeddaedadadaeaetieeldee T N
AAAAAAAAAAAAAA.AAAAAAAAAAAAAAAAAAAAAAAAAA H

' "

:,,,/,,,),,,,,,/,,,,,,,),)/,),,:),,;)

jaddaeeeeddddecldddaeddadeaeedaaaedeecteeecin '

16
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 88

CHAR TYPE[37]
CHAR__BUFFER[S&]
CHAR ENHANCE[38] :
CHAR‘TYPE[SBI
CHAR BUFFER[33]
CHAR_ENHANCE[33] :
CHAR TYPE[39]
CHAR BUFFER[40]
CHAR_ENHANCE[40] :
CHAR TYPE[40]
CHAR_BUFFER[41]
CHAR_ENHANCE[41] :
CHAR TYPE[41]
CHAR_BUFFER[42]
CHAR ENHANCE[42] :
CHAR TYPE[42]
CHAR BUFFER[43]
CHA.R_ENHANCE[43] :
CHAR TYPE[43]
CHAR BUFFER[44]
CHAR ENHANCE[44] :
CHAR TYPE[44]
CHAR BUFFER|[45]
CHAR ENHANCE[45] :
CHAR TYPE[45]
TWO_CHAR SEQ('H');
TWO CHAR_SEQ('J");
NEW(OLD_ A.REA Js
OLD AREA : DEFINE_AREA(24, 79 0, 0);
DAY BLOCK[1) :="
DAY BLOCK[2] := ' ¥
DAY BLOCK[3] ' s
DAY OF MONTH : 1
FOR WEEK _OF MDNTH := 170 5 DO BEGIN
FOR DAY OF WEEK := 1 TO 7 DO BEGIN
STR(DAY OF MONTH:2, DAY HOLD J;
FOR TPOINT := 1 TO 2 DO BEGIN
DAY BLOCK[1, TPOINT + 8] := DAY HOLD[TPOINT];

END;

DAY OF MONTH := DAY OF MONTH + 1;

FILL DATE _BLOCK(WEEK OF MONTH, DAY OF WEEK, DAY BLOCR);

END;
END;
WRITE AREA(1840, CHAR ENHANCE, CHAR TYPE, CHAR BUFFER);
DAY BZOCK[2] x r**********v. - -
DAY BLOCK[1] : XX';
FILL DATE_BLOCK(2, 3, DAY BLOCK);
DISPLAY DATE BLOCK(2, 3);
END.

’ | .

'@@'~
'a A A A '
'@@@@é@@@@@@@@@@é@@@@@@@@@@é@@@@@@@@@@é@@'}
4 4 a
'@@'
tA ,
'@@';
A A a
'@@'~
'A y '
'@@'-
A A A
"Asss35333358555555355s ;;;;;;;;;;S;;;;;;';
' 0@@RAACACERRAACAARAEAAREAREACAARAAREAREE"
' AA' |
Ti5s3S533055555585555353533855538533538 s
' eaeeecaceaaeaaeaeacaeaeeeeaeaeeaeaeaceee’ ;
' AAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAARAALA * ;

tow

Paper 3050 17 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

3051. Cooperating Processes in an Information Network

Peter Gerstenhaber
Systems Specialist
CMS Ltd.

11 Masad St.
Tel Aviv, Isreal

OVERVIEW:

Traditional system design, and program design techniques are
single threaded. Most programs are designed to accept and
validate data, and then perform the desired request before
accepting the next input. In single machine configurations
this may lead to systems which meet the desired response time
requirements, but suffer when additional users are added. In
larger systems, or those which require more than one machine to
satisfy a user’s request this may lead to a poor or unpredictable
response time.

The purpose of this paper is to ©present a design of a
multi-cpu system which is in use today utilizing the above
mentioned features. This system provides the user with a
uniform response time across many machines with varying
loads. The primary purpose of this choice of design was not
to decrease response time, but to decompose the project into
managable programs which could be worked on independently.
As a by-product, the application provides a high 1level
interface to data bases spread across multiple machines.

INTRODUCTION:

Trends in system design have typically lagged behind computer
developments by as much as a decade or more. In the 60’s and
70’s, system design was mostly dictated by machine architecture.
Early systems were based completely on batch input, where many
batch jobs had the same characteristics. Batch jobs typically
were composed of the edit (verification of data format),
validation (data consistency), update, and reporting phases with
the option of reformatting for the next batch job (since
everything sometime or other gets fed into the general ledger
application). Dependent upon complexity, any of these steps
consisted of any number of programs, each with it’s own exception
report(s), and sorting for proper input sequence. The main point
of this description, is to note the sequentiality of the data
flow. Today, we don’t work as much with big batches of
transactions, but instead with single transactions performed
on-line, usually by a single program. This program must accept
and edit the data, validate for correctness (existance of
part-number, location-code, etc), update the necessary data
base(s), and report sucess or failure. The same program, or an
additional one usually performs the data reporting function. As
with batch jobs, these events are performed in a sequential
order, without any overlap. Essentially, the outcome is that we

Paper 3051 1

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

are now performing on-line in the same manner as batch jobs were
performed. The difference being that transactions from different
users must use locking to avoid inconsistencies when updating.

This sequentiality exists in spite of the fact that MPE is a
multi-programming operating system (i.e. that it shares the
system’s resources in an orderly fashion among the processes
competing for these functions), and was not the first of this
kind. Concurrency has been built into the operating systems of
many machines, but not much further. There isn’t an industry
standard language available which allows concurrent activities
within a single application system, without specifically
imbedding within the application calls to system routines. This
results in many application systems being implemented by large
sequential programs which utilize alot of stack space, open many
files/data bases, and may not exhibit the desired performance or
modularity. This makes program maintance difficult or next to
impossible due to the size of the program, stack limitations,
and/or subsystem data areas. MPE V/E with the micro-code
allowing table expansion overcomes the previous limitations of
program size, but does not address stack limitations in the
least. Programs which use V/PLUS may need an additional 8-10k
words DL-DB (or more), leaving precious little left for programs
which declare all their variables globally.

THE PROBLEM:

An application problem requires multiple IMAGE data bases, and is
logically distributed accross many systems. The problem is to
design and implement a system to handle multiple data bases, and
multiple CPU’s in a consistent fashion with a high 1level
interface which may be accessed from TRANSACT/3000, COBOLII/3000,
and PASCAL/3000. It is required that one site be designated as
the ‘“central" system, and that there be several ‘“local"
applications which are logically connected. A local system may
only communicate with the central system, while the central
system may communicate with any or all local systems. This is a
typical star topology. Systems may share processors, so that
several "local" application systems may share the same physical
machinery with each other, and/or with the "central" system.
There should not be any restrictions imposed as to the
combination of application systems per physical processor.
DSN/DS and DSN/X.25 will be used for machine interconnection.
The central system 1is to have a consolidated data base which
consists of the sum of all the data bases of each local system.
This data base is to be kept sychronized, and should be designed
to be fault tolerant (i.e. so that a transaction applied to a
local data base will be applied to the central data base without
regard to system/data communication problems). The central site
is to control all data communications, and allow each local
system access to the central data base. Users at any site may
query either the data base at their local site, or the central
data base. Users may update any data base for which they have

Paper 3051 2

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

access. There a class of user who may update data at a different
local system then the one they reside on; while a second class
may update data only at their local site. The system should
provide complete auditing information, so that a log file may be
queried by data, date, time, terminal, transaction type, and/or
location.

PROCESS HANDLING, A DIFFERENT PERSPECTIVE:

In designing a large multi-cpu system to solve this problem, we
did not reach any of the MPE limitations. Instead, our first
problem was establishing a locking heirarchy for a multi-data
base environment. This was easily worked out, but was a
precursor of problems which were not anticipated (such as data
consistency in a multi-cpu, multi-data base environment). As the
system was being designed and implemented, it was noticed that
there were transactions which did not meet the severe response
time requirements. Of the entire set of transactions, there were
several which meant massive changes to the data bases, and could
conceivable lock the data bases for minutes (1-3) while they were
being processed. Clearly these transactions had an adverse
effect upon overall system response, and an extremely pronounced
effect on response time for all terminals using this particular
application. With this in mind, it was decided to decouple all
data base updates from the rest of the application. 1In essence,
the on-line application only performed a reporting function and
data entry. This data entry was written to a transaction file
which was processed by a background process concurrently.

The advantages of implementing a system based on background
updates are numerous. It was meant to decouple terminal response
time from data base updates, and gave on-line users an extremely
fast response. As a by-product, there were several advantages to
this approach. Since each transaction was atomic, there was no
need for IMAGE logging. Each transaction could conceivably
translate into many DBUPDATE/PUT/DELETE’s. Auditing was easily
accomplished at the transaction level, and was almost a
by-product of this implementation. Auditing information was
available with user name, terminal, program, form file, and time
with the rest of the transaction. A complete record of all
transactions could be formatted by any or all or the above

criteria. If +timing information was included within the
transaction, response time and system utilization could be easily
calculated. This would have the advantage of calculating

application response time (as opposed to system response time)
which is meaningful to any system analyst.

It could be argued that this method serializes all updates to all
data bases envolved unnecessarily. This is true, but on the
other hand since a single transaction is a related piece of
information, it is localized. At the time this application was
written, there was no need for a seperate process for each data
base (as in a data base server approach), but this could have

Paper 3051 3

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

easily been implemented. The data base server approach keeps
intact data integrity at <the transaction level, but allows
transactions which apply to multiple data bases to proceed in
parallel. This left the on-line program running without any
locking, and therefore without delays due to multi-user access in
an update mode.

Additional benefits were derived from this design methodology
which proved important in a development environment. Since a
program was restricted in scope, it was smaller in size, with a
corresponding smaller stack. There was less overhead since there
was one stack which was performing data base maintance.
Additionally, in a multi-cpu system, there was one flow of
transactions throughout the entire system as opposed to each
on-line terminal performing remote data base queries and updates.
This feature will be examined in closer detail after a discussion
on the features of MPE which facilitate a distributed
environment. Basically this method of functional decomposition
of a problem is similar to utilizing pipes in UNIX. Unlike UNIX
pipes, however, MPE provides for sychronization of processes
which are not for the same user, or necessarily on the same
machine.

It may be argued that this design methodology has problems with
users performing concurrent updates. In most applications, where
weak locking is used, if two users update the same record, the
user whose updates are performed last is the user whose data
remains in the data base. With the above methodology, this
remains the same. The major drawbacks are that this doesn’t
allow for strong locking, and by it’s very design this is a
non-deterministic system with respect to time (i.e. the time an
update will take place cannot be determined, but it is guaranteed
to happen). If this is acceptable, then this is possibly a good
design alternative.

THE TOOLS:

The CREATEPROCESS intrinsic is notable mainly because of it’s
benefits over the CREATE/ACTIVATE intrinsics. Being able to
create a process and redirect $STDIN/$STDLIST has the advantage
that an application program written in COBOLII, or PASCAL (or SPL
for that matter) using standard language features as READ and
WRITE can access a file other than the standard input/output
files of the session, and moreover this is performed transparent
to the application. The CREATEPROCESS intrinsic sets up the
environment for a program to be run, complete with it’s own data
stack. This program may optionally be scheduled to run at the
same time. When this program is run (ACTIVATEd), it competes for
the CPU and all other resources with all other processes (running
programs) in an asychronous fashion. Asychronously means that
this process and all other processes will use the machines
resources in an indeterminate fashion, without being able to
determine the order of completion.

Paper 3051 b WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S5

IPC greatly enhances the file system with two file types and many
different types of access possible. Circular (CIR) files are log
files which hold the last N records (where N is at most the file
limit). The behavior of these files is similar to a sequential
file until they reach the end of file. As records are written,
they are appended to the end of the file. When the file is full,
additional records are written, and the oldest records (the ones
at the front of the file) are deleted to make room for these new
records. Note that the beginning of file changes as additional
records are written after the file is full. This is also known
as a "wrap-around” file for this reason. Circular files have the
restriction that they can only be opened for one type of access
at a time (i.e. open for either read access, or write access to
multiple users, but not both).

Interprocess communication (IPC) also includes message (MSG)
files which permits multiple user processes to communicate via
the file system. A message file is a FIFO (first in, first out)
queue of messages (records). Records are added to the end of the
queue via a WRITE, and received and deleted via a READ. In each
file open to a message file, the process must specify either READ
(the process is identified as a READER) or WRITE access (the
process is identified as a WRITER). This is described in the MPE
INTRINSICS MANUAL as a "unidirectional flow of information". If
a process needs to update a message file, it must open the
message file twice; as both a READER and a WRITER. Any message
which a READER receives is deleted from the file automatically by
the file system. There is a special access allowing the entire
message file to be read without destroying it’s contents. This
access is call COPY access, but the process requesting this type
of access needs EXCLUSIVE access to the message file. This is
essential for development when the contents of the file are to be
viewed before processing (or a copy made via FCOPY). Typical
applications for message files are with many producers of
messages (WRITERS) and one consumer (READER), although the file
system allows many combinations dependent upon the access
options. The defaults for a message file allow global
multi-access and exclusive access (one READER, and one WRITER).
If a message file is opened with SEMIexclusive access, only one
READER is allowed, but there may be multiple WRITERS. SHR access
allows any number of READERS and WRITERS at the same time. With
the file open, the allowable structure of READERS/WRITERS is
determined. A message file allows either MULTI or GMULTI access,
with MULTI restricting access to processes within the same
job/session. GMULTI access allows wunrelated processes to
communicate with one another only by utilizing the file system.
This implies that for an IPC application with cooperation among
processes, there is no longer a need for process creation and the
restriction that these processes be related. Because of this,
message files are an extrenely friendly and easy method of
interprocess communication.

As an added benefit, message files use GMULTI access, which means
that there is one control block and set of buffers for all

Paper 3051 5

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

accessors. In it’'s implementation, these buffers are only
written to disc when necessary. When the READER can keep
consuming the messages at the rate they are being produced by the
WRITERS, there is no dise ifo, but inter-data segment memory
transfers. Therefore, the impact on overall performance is
negligable, and with access the extra data segment containing the
control block will remain in memory.

MSG FILE FEATURES:

Message files are by nature variable in record length. This
permits users to send and receive variable length messages via
the file system. into the Unrelated processes are queued
automatically, and therefore sychronized. A READER will wait
when reading an empty message file, as a WRITER will wait when
writing to a full message file. A variable time-out interval may
be set which limits the length of time it may take for a request
to be serviced before it is aborted. With this facility, there
is no need for a process to suspend indefinitely. Note that
checking the end- of-file is not sufficient since in a
multiprogramming environment other processes maybe performing the
same check and then writing, before the first process which
checked the "end-of-file". Non-destructive reads allow a READER
to preview the head of the queue without destroying this message.
Multiple READERS may read the same message non-destructively, but
only one destructive READER will delete the message. Care needs
to be taken with multiple READERs using this feature. This is
the only type of file which permits non-privileged mode nowait
I/0. Nowait I/O allows a process to perform a write (or a read)
and check later within the program for it’s completion. Typical
nowait I/0 is also unbuffered which implies the need of
privileged mode, but all I/0 to a message file uses a sharable
control block and buffers. Because of this, nowait I/0 for
message files does not require the use of privileged mode.
Software interrupts are supported which allow a trap facility to
be invoked upon completion of an event (typically a read). This
allows messages to be received asychronously and handled out of
the main-line code similar to a control-y trap. A trap procedure
is entered when I/0 completes and the interrupt is generated.
After the trap routine completes, control transfers to the next
sequential instruction in the mainline code. Nowait I/0 and
software interrupts are features available on local message files
only, and cannot be used with remote file access. All other
features are available with both local and remote file access.
Most importantly, message files provide the means of interprocess
communication and sychronization without having to resort to
artifical conventions.

Paper 3051 6

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

THE SOLUTION:

The solution to this problem was quite simple. Once the data
base update program had been written, it needed a small change to
run at the central site, and the local site. With this intact,
there was left the data communications to feed into this system.
This was split into two programs, one to handle operator commands
and responses, and the other for the actual data communications.
Between the +two, more +than one method of interprocess
communications and sychronization was used.

Data communications was performed completely via the file system.
This program was written in PASCAL/3000 using standard system
intrinsics, and requiring IA,BA,and PH capabilities. This
process has access to only one "local" site, and is run from the
central site. The following description will be a simplification
since the application requires six message files and two sets of
data bases (one for performing application queries, and the
second to determine routing information of other data
communication handlers). The input transaction file could be
either a remote file (the usual case) or a local file (in this
case, the '"local" site was on the same physical machine as the
"central” site; locations were to be transparent to this
application). Basically all this program did was to read it’s
input transaction, process the request, and then delete the
transaction from the input file. For those interested in
performance with remote file access, the message was deleted by
reading it via FREAD with a zero length. This transaction could
be any one of several types. The usual transaction was reporting
an update which already took place at the local site and needed
to be applied to the central site. In this case, the transaction
was routed to the output message file. This message file was
being written to by each of the data comm handlers, of which
there was one for each location. This is the input file for the
process which updates the central machine’s data base. If the
transaction was from a local site requesting that a different
local site’s data base be updated, this request was routed to the
data comm handler for the requested site via a write to a message
file. A local user may Qquery the central data base via a
transaction. This query may be qualified with selection
criteria, ranges, and/or boolean operations. In this manner the
query only returns to the local machine those entries which meet
all criteria. If remote queries had been allowed, all data
meeting the search criteria with IMAGE would have to be
transmitted to the local machine, regardless of the selection
criteria. With this method, only males between the ages of 30
and 50, with blue eyes, living in New York City, with the name of
Zacharia Smith would be retrieved across the communications lines
as opposed to all Smiths on the system. Additionally, a request
might ask for all information about the selected entries (i.e.
all detail information directly related to Zacharia Smith’s
master entry). A message file is opened up to the process making
this request dynamically, and closed each time a request is
received for a different process. In this fashion, the message

P 051
aper 305 7 WASHINGTON, D, C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

file stays open if a terminal process makes multiple query
requests one after the other (which is the usual case).

A different message file handles requests from the central
machine. Requests in this file could be from wusers of the
central machine, or other data comm processes trying to route
information to the local site to which this process is connected.
This information is handled asychronously. Whenever a record is
written to this file, it is immediately transfered to the local
site. This is handled by using soft interrupts, and nowait I/0
on the message file. An example of using soft interrupts on a
message file is included later.

A parent process was used to create and monitor activity to all
locations. This process used a data base which had the necessary
information to create the environment for each data communication
process (specifically file equations, run parm, run info string,
and file redirection). Communications between the control
process and each data comm process was via MAIL intrinsies. This
was chosen because in all cases, only one word of information
needed to be exchanged, and this information could only be made
use of at specific points in the program, so there was no need to
trap, but to check. This alleviated the overhead of the file
system, and substituted memory transfers (of one word) from stack
to PPCT to stack. This process checks for the existance of each
of it’s sons, and warns the operator when a son process
terminates abnormally.

8
Paper 3051 WASHINGTON, D. C

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 88

THE TRANSFER PROCESS IN FULL:

[Console Msgs] [Central DB] [Config DB] [Transactions)
[

|
|
[
|
|
|
|
[
[
|
|
|
I /
[Interrupt In] ---~----=~-- (Transfer) -----~---- [Msg Routing]

[\

|

|

|

|

|

}

|

|

|

|

|

—— s et e et e e e e H —— . — — — — — — — e —

[Mass Add] [Transactions] [Query Responses]

Of these files, the "Query Response” and "Msg Routing" are files
which are switched dynamically to meet the demands.

Paper 3051 9

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5%

SYSTEM OVERVIEW:
Central Machine

[Central Data Base]

/ I \
/ | \
/ [\
/ [\
/ {DB Update) \
/ I \
/ | \
/ [\
/ [Consolidated Transaction File] \
/ / \ \
/ / \ \
\ \
{Transfer) ‘e (Transfer)
/ I [\
/ { l \
[Interrupt In] | ! [Interrupt In]
| |
[|
[|
++++++++ 4444444444+ Data Communications P
| : |
Local | + | Local
Machine | + | Machine
"A" [Transaction] + [Transaction] “B"
| + |
| + |
! + [
[Local DB] <« « « (DB Update) + (DB Update)} » » » [Local DB]
	+	
	+	
+		
[Transaction] + [Transaction] {		
	+	!
	+	
[! + | |
(Terminal Server) + (Terminal Server)
. + -
- + -
. + ,
(Terminal Server) + {Terminal Server)

Note that processes are enclosed in parenthesis, while files and
data bases are enclosed in square brackets. A transfer process is
created per 1local system, while terminal server processes
communicate with each terminal connected to this application.

Paper 3051 10 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S5

EXAMPLE:

Initialization Code:

asych_file io := FOpen('file-name’);
IF (CCODE <> good_cc)
THEN
fatal_file_error(asych_file io);
FControl (asych file_io
senable soft_interrupts
,WADDRESS (soft_interrupt_handler
)3
IF (CCODE <> good_cc)
THEN
fatal file error(asych_file io);
FRead(asych_file_io); (* Note that this assembles the I/O
request but does not block us, or transfer any data
even if data is available *)
IF (CCODE <> good_cc)
THEN
fatal_file_error(asych_file_io);

Interrupt Routine:

("ﬂﬂ“ﬂ’ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ““““““ﬁﬂﬂﬁﬁﬁﬁﬁﬁﬁﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬂﬁﬂﬁﬂﬁ’.ﬁ’ﬁ)

Soft Interrupt Handler *)

This procedure handles soft interrupts. This is enabled *)
for only the Central to_Local file. When a record is *)
written to this file, this program will be interrupted *)
asychronously (i.e. anywhere it is), and control will be *)
transfered to this procedure by the Operating System, *)
transparent to the logic of the program. We will then *)
read this record, write it to the remote machine, and re- *)
establish a no-wait i/o request for this file. *

(’Qﬁﬁ#ﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬂﬁﬁQﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ#ﬁﬂﬁﬁﬁﬁﬁﬁ.ﬁﬁ#)

Paper 3051 11

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 86

PROCEDURE soft_interrupt_handler{f_num: small integer);
PROCEDURE FIntExit(state: BOOLEAN);
EXTERNAL SPL VARIABLE; (" Intrinsic Definition %)

('lﬂllllllllll**““’I’“****I’*Q*I”l*ll*llll**l**"*”*’*Qllllll’llﬂ)

(* ")
(* Read Write *)
(* 3 ")
(* This procedure handles the 1/0 for the soft interrupts. *)
(* It is in a seperate procedure so that the variables *)
(* will not be nested if there is a backup on this message ")
(* file (note that the FIntExit re-emables interrupts ")
(* before this procedure can finish. Theoretically, many ")
(* interrupts may be nested and we could stack overflow. *)
(* By moving the variables into this procedure they are *)
(* allocated and deallocated before the FIntExit so that *)

(* we will not have a stack overflow.
(..".”.’“*.*.***.ﬂ'*.“*.**’**”*.**.*..**.******.*.*ﬁ.'“’.*”*ﬂ)
PROCEDURE read_write(f_num: small_integer);
VAR
io_ree: STD_REC;
io_rec_len: small_integer;
PROCEDURE IoDontWait; INTRINSIC;
BEGIN (* read_write *)
IoDontWait (f_num, io_rec, io_rec_len);
IF (CCODE <> good_cc)
THEN
fatal file error(f_num);
FWrite(remote_dbupd_fnum, io_re¢, -io_rec_len, 0);
IF (CCODE <> good_cc)
THEN
fatal file error{remote_dbupd_ fnum);
FRead(f_num, io_rec, -SIZEOF (1o rec)).
END; (* read _write *)

BEGIN {* soft_interrupt_handler %)
IF (f_num <> asych_ file _io)
THEN

fatal file error{f_num);
read wrlte(f num) ;
FIntExit;
END; (* soft_interrupt_handler *)

Note that a nested procedure is used to accept the data into a
dynamic buffer. If this were incorporated into the trap
procedure, there could be a problem with multiple requests
interrupting as soon as the FINTEXIT is executed, and before the
procedure is exited. This problem would be with stack space
being acquired for each activation of this procedure.

Paper 3051 12 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

SUMMARY :

IPC is a valuable tool which allows the system designer to make
use of "“piping". Applications may be functionally decomposed to
allow different processes to perform different functions.

IPC is more powerful than "piping” with the addition of nowait
1/0, and soft interrupt processing. This enables the application
program to have more than one input file, and handle each input
file seperately, without having to check each input file. The
example showed only one file with soft interrupt processing
enabled, but any number of message files can utilize both nowait
1/0 and soft interrupt processing.

IPC isn’t dependent upon process handling, but can be used in any
environment where process communication and sychronization is
required.

IPC can be used for intermachine data transfers in an easy
manner. There is no longer the need for complicated programming
techniques to allow an extremely flexible, and transparent
interconnection. A high degree of data system integrity may be
achieved in a system wutilizing multiple data bases across
multiple systems.

IPC is available with any language which supports READs and
WRITEs. This means that RPG, COBOLII, PASCAL, TRANSACT, etc have
transparent access to IPC.

IPC 4is an integral facility wused 1in the development and
application of a major distributed system which has been
described in this paper. Without this facility, this project
would have taken more than TEN times the effort to accomplish the
data communications necessary.

Paper 3051 13 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 88

3052. Creating Custom Applications On The HP3000

Marv Miller
Computer Systems Divison
Hewlett Packard

SUMMARY

One of the most time consuming functions of an application system’s
programming team is program maintenance. Quite often this time is related
to the kinds of activity that can be greatly reduced or even eliminated by
taking full advantage of the integration of Transact/3000 and the
dictionary.

These kinds of changes are those where new input forms are being added,
existing input forms changed or deleted, new data elements are being
added, and other already existing elements are being changed in size or
eliminated.

This paper follows through examples of localizing a program, that is,
making it independent of the screen name and the number of screens that
execute the same code, independent of the screen contents, and providing
user exits for additional processing. The changes are always made to the
dictionary. The changes become effective in the program by simply
recompiling the program in order to pull in the new dictionary
definitions.

INTRODUCTION

An application system can be divided into at least two parts. The first
part is made up of the data that is needed by the system processing logiec.
This data or these data elements are critical to the proper functioning of
the system. For example, a manufacturing system no doubt has an element
called PART-NUMBER which is a c¢ritical part of practically all system
transactions.

A typical application may have several c¢ritical data elements. It is fair
to say that a localizable application can not allow c¢ritical fields to be
deleted from the application. Application programs rely upon these fields
to be present in transactions.

However, a localizable application should allow these elements to be
changed in size. It should also allow the physical placement of these
elements within an input form to be changed.

The other part of an application is made up of non-critical elements.
Many of these elements may be supplied as a part of the original
application, if for no other reason than the typical generic¢ application
has these data elements. Other non-critical elements may be added by the
particular user of the application.

P 052
aper 305 1 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

A localizable application should allow non-critical elements to be added,
deleted, changed in size, and changed in physical placement within an
input form.

Also, generic transactions should be localizable. A generic transaction is
defined here to be a transaction that provides a basic function such as
adding a customer or updating a customer. For example, one organization
may be responsible for adding new customers to the database, but several
organizations need to be able to update portions of the customer data.
Each organization should be provided with a form which only accesses the
data they need. The same program logic that provides customer update
capability should be able to handle any number of these variations.

Finally, a localizable application should allow logic to be added to
handle such things as: special field edits for any of the transaction’s
data elements, data calculations, etc.

The following discussion explains how Transact can achieve this level of
localization. The objective is to write an application program such that
if the application is changed as described above, the program is not
modified. The changes need to be recorded in the dictionary, the program
recompiled to make the changes known to it, the VPLUS forms file modified
to reflect the changes, and possibly the database unloaded and reloaded if
its structure has been modified.

A GENERIC TRANSACTION

First, a simple transaction that only applies to one dataset. This
demonstrates all of the concepts to be achieved through localization,
Later an example is given of a generic transaction that applies to several
datasets, in order to demonstrate the general case of how to write generic
code.

The discussion starts with a transaction to update information for a
customer. Breaking this transaction into the two parts discussed above,
the critical element in this transaction is CUST-NO. The non-critical
elements are: NAME, STREET-ADDR, CITY-STATE, and ZIP-CODE.

Paper 3052 2 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

The VPLUS form used for this function is VCUSTOMER.

L2222 222222222 2 2 2 2 22 222 2 2222 2 a2 22221222 22 2 2R 22222 2222222232222 2222 2L 2]

*vcustomer customer data »
» »
» number [] »
» »
» name I] »
* »
» address [] »
» »
» city,state |] »
» »
* zipcode [] »
» »

(2222222222222 222 2 222 2 22 222 2 222 2222 2 22 2 2222z 222 2R X222 2 2 22222yl)]

The CUSTOMER dataset definition is:

FILE: CUSTOMER TYPE: MASTER

ELEMENT PROPERTIES:
CUST-NO I+(4,0,2)
NAME X (20,0,20)
STREET-ADDR X (20,0,20)
CITY-STATE X (20,0,20)
ZIPCODE X (6,0,6)

The following program illustrates how a transaction to update a customer
might be written without allowing for any localization. This program will
be expanded to illustrate most of the localization concepts.

1 system custfm,base=orders,vpls=formfile;

2 list(auto) customer;

3

L level;

2 get(form) vcustomer,init;

7 set(key) list (cust-no);

8 get customer,list=(@);

9 put(form) vcustomer,window=("update? - fl=yes, f2=no");
10 get(form) vcustomer,fl({autoread)=modify-f1
11 ,f2=modify-£2;

12
13 modify-fl:
14
15 update customer,list=(@);
16
17 modify-f£2:
18
19 end;
20
21
Paper 3052 3

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

22 exit:
23
24 exit;

The program uses the same form to initially input the customer to be
updated (line 5), display the current data for the customer (line 9), and
input the new data for the customer (line 10).

REARRANGING THE SCREEN

Perhaps the easiest form of localization is to rearrange the order of
elements on the screen. The program form specification does not include
any element ordering information. This is controlled thru the dictionary.
Thus, this localization can be accomplished by modifying the form using
FORMSPEC, changing the element sequence on the form definition in the
dictionary, and recompiling the program using TRANCOMP.

The same program could then handle input from a form such as this:

RARRARARRARARRARARRARARRARRAARARARARARAAARARARRARRARARNARARARARARNARRARARAANAREARN

*vcustomer customer data »
» »
» »
* name 1] number | 1 *
» »
» address | | *
» »
* city,state | | *
» »
* zipcode | 1 *
» »
» »

RARRARARARRARRRARRARRARARRAARRARAARARARARARARARRRARAARNARRAARARRARAAARANARARANS

Changing the screen definition in the dictionary might go something like
this:

RARBANARRRRRARERABRARARARARNRNRRRRRARARRNARRRAARARARABRARRARRARNRAARRARARNRRRNN

:run dictdbm.pub.sys

DICTIONARY/3000 HP3224kA.02.01 - (C) Hewlett-Packard Co. 198k
PASSWORD FOR DICT.PUB»

FORMS ENTRY(Y/N)?>

> show file
FILE vcustomer

FILE TYPE: RESPONSIBILITY:
VCUSTOMER FORM
Paper 3052 L

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

ELEMENT(ALIAS): PROPERTIES: ELEMENT (PRIMARY) :
CUST-NO I+(4,0,2) CUST-NO
NAME X (20,0,20) NAME
STREET-ADDR X (20,0,20) STREET-ADDR
CITY-STATE X (20,0,20) CITY-STATE
ZIPCODE X (6,0,6) ZI1PCODE

3 resequence file
FILE vcustomer

ELEMENT name
NEW POSITION cust-no

ELEMENT
3 show file
FILE vcustomer

FILE TYPE: RESPONSIBILITY:

VCUSTOMER FORM
ELEMENT (ALIAS): PROPERTIES: ELEMENT (PRIMARY) :
NAME X (20,0,20) NAME
CUST-NO I+(4,0,2) CUST-NO
STREET-ADDR X (20,0,20) STREET -ADDR
CITY-STATE X (20,0,20) CITY-STATE
ZIPCODE X (6,0,6) ZIPCODE

(2222222 2222222 22222223 2 2222222222223 2 2222 s Xt X s 2222222 2 R Y] 2 R]

SCREEN INDEPENDENCE

The above program can be modified to fllustrate implementing generic
transaction code that can handle multiple screen formats. The program
could have been written this way to start with. It is not a program
modification that must be made every time a new form is added.

The following program provides generic update customer capability and is
form independent. That is, the program has no idea of which data elements
exist on a form, nor does it know how many possible different forms may be
used to update a customer.

RARNRARNRARRAARARARRRAARRRRRRRAARARRRRAARRARARARARRRRRRARARARAARRARARARRRRRRRER

1 system custup,base=orders

2 ,vpls=formfile

3 ,file=formxref;

Y define(item) menuname x(16):

5 fkey 9(2):

6 screen x(16):

7 lastkey i(l);

8 list menuname:

9 lastkey;

10

11 data menuname; <<to simulate transfer of control to this
12 subroutine>>
Paper 3052 5

WASHINGTON, D. C.

32
33
34
35
36
37
38
39
L0
11
43
uh
45
46
u7
48
L9
50
51
52
53
54
55
56
57

BALTIMORE WA SHINGTON REGIONAL USERS GROUP INTEREX85

L
L2222 22 2222222412222 2222222 2222223222 2222232222222y}

Subroutine: to update customer information
input: menuname - contains the name of the screen to be displayed

output: none
RERRRRARRARERARRRRRBRRARRARBERARRRRERRARRRBRRRRRRBRRRRRRRRRRNR NN

>>
level;
list fkey:
screen;
list(auto) customer;
get(form) (menuname),init
ywindow=(" ")
,fkey=lastkey
,autoread;
if (lastkey) = 0
then perform modify
else
do
set(match) list (menuname);
let (fkey) = (lastkey);
set(match) list (fkey);
get(serial) formxref,list={menuname,fkey,screen);
reset(option) match;
perform modify;
doend;
end;
modify:

set(key) list (cust-no);
get customer,list=(€);
put(form) {screen),window=("update? « fl=yes, f2=no");
get(form) (screen),fl(autoread)=modify-f1
,f2=modify-£2;
modify-fl:
update customer,list=(8);
modify-f£2:

end;

(222 ISR RR R R R R R R R R YRS RS 2R 2]t]

It uses Transact’s indirect referencing capability for forms. Notice that
all verbs which reference a screen name do not actually specify the screen
name. Each verb specifies the name of an element which contains the name
of the screen to be referenced.

The program sets up a menu driven customer update capability such as the
following series of screens depict.

Paper 3052 6

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

EY T YT Y YT YYYI Y Y Y Y Y Y S X R RS LR L LYY R LRl L L L L L L

*custupdatemm customer update main menu *
» »
» *
bt enter customer number [2] hd
» »
» *
* f1 - marketing (custupdatel) *
* *
bt f2 - finance (custupdate?2) *
* »
* f3 » accounts payable (custupdate3) »
» »
* (222X R L2 2 X 2 2 2 22X X X R 2 2 X 2 . R X 1] »
» or *
* »
* enter screen name | | »
* »
» »

LA 22 Al Il Rl Yl Ll s Rt el ed syl d sl gt

market- finance® accounts® * » * * exit *
*ing * * payable * » * * » *
(XTI RS2SRRSR 2 2222022222222 2220 0 22222 0.2 R 3

(2222122 2 X LI R sl el Rl liedRas s sl el eyl yy]

*updatel marketing customer update bl
» »
* *
* *
* customer number [1] *
* »
* name [name of customer 1] *
» »
» »
*update? fl=yes, f2=no *
A A I 2T I I I I I I I I I I I I I I T I I I I T I I I I I I W I I I I I I I3 I I I B I I I I I NN

(222 A i bl ed s il el R i Xl il ligass s et st LYy Y]

*custupdate? finance customer update *
* *
» *
* customer number [1] *
* *
* zip code [12345] *
" ! »
* »
*update? fl=yes, f2=no *
XXX 22222 EERR SRS RS2 222222222222 R 2 2 2 2 3

P 052
aper 305 7 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

RRARRRRRURAARRARRARURRRRRRRRRARARARRRARERRRRRRARRRRRARRARAARARRRARRRARARARRRARR

:custupdate3 accounts payable customer update
customer number [1]
name [name of customer 1 |
address [108 Lincoln Ave. 1
city,state [So. Bend, Ind. 1

2ipcode [12345]

® 2 ¥ & ¥ T & EE XS
* 3 ¥ & & ¥ & & % X% X 29

*update? + fl=yes, f2=no

RAERRARARRARRRARARRRAARRARRRARRARARAARRARARRARERRARARRARRARRRARAARRRARRRRRRRRARRRS

There are many ways to implement a form independent program. The above is
just one illustration. Probably the key to this implementation is the MPE
file called FORMXREF which provides the indirection needed to establish
form independence.

The content of FORMXREF is as follows:

RARRARRRARARRRARARARRARRARAARARARRRARIRAR

*MENUNAME : FKEY: SCREEN: had
B e e mm e m e m e, —. .- ———— »
* CUSTUPDATEMM 1 CUSTUPDATE1"
* CUSTUPDATEMM 2 CUSTUPDATE 2"
* CUSTUPDATEMM 3 CUSTUPDATE 3*

RARARRRAARRRARRRERARRRRRRBRRHARRRRRERNR

MENUNAME and FKEY are the index into the file specifying the menu that the
user is currently working with and the function key just pressed by the
user to indicate the next screen to go to. SCREEN contains the name of the
next data entry screen to use.

When this program begins, the element menuname c¢ontaing the name of the
menu that controls its functionality. Line 11 simulates this by prompting
for the menu name. When prompted for the menu name, CUSTUPDATEMM was
typed in.

The menu allows the user to specify the next screen in either of two ways.
The name of the screen can be entered in the box titled enter screen name.
The <ENTER> key enters this data and lines 30 and 31 detect this and
perform the update routine. Or, the screen can be indicated via a function
key. If this way is chosen, the file FORMKXREF is accessed to determine the
screen name to be used by the modify routine. Lines 34 thru 39 accomplish
this.

The cross reference file has a record for each function key of each screen
that defines the name of the screen to use when that function key is
pressed. In our example, if the user presses <fl>, then screen CUSTUPDATEl
is used.

Paper 3052 8 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

Another form for updating a customer could now be designed and used by
this program merely by recompiling the program. Of course, the form would
have to be designed in FORMSPEC and defined in the data dictionary first.

ADDING, DELETING, CHANGING ELEMENTS

The following illustrates a major change to the CUSTOMER dataset,
expanding the size of CUST-NO from k4 to 6 digits long, deleting the
ZIPCODE field and adding a new field c¢alled AREA. The important point for
Transact is that the program only needs to be recompiled to incorporate
the new structure.

First, the form file is modified, changing all the forms that reference
the customer data.

CUSTUPDATEMM is changed to reflect the 6 digit customer number.

ARRARAAAARARRRARARARAAAARARRRAABARRRARARRAARAARARRRRARRARRRARERRRRRARRAARANRS

* custupdatemm customer update main menu *
» »
»
» enter customer number { 1 »
»
»
* fl « marketing (custupdatel) »
» »
* f2 - finance (custupdate?) »
L. »
* f3l - accounts payable ({custupdatel) hd
» »
» RANRAARARARRANHBARAREARRARRRARRAAARARRARARARRARAERRN »
» or »
L. »
* enter screen name | »
L. »
L. »

RARRNARRARARARARRARRRAARARRFRARARRRRAARBARRRAARRARARARARNATAEARARAARARARRAARN

market- finance® accounts* * # * * exit *

“ing # » payable L} L] L] L] L] »
LI X AR RS AR AR R R R A X R A Rl 2 A R 2R X2 X ot s d X a2 22222 XX)

CUSTUPDATE1 is changed to reflect the 6 digit customer number.

P r 3052
aper 305 9 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

NREBRRRRRRRBRENRRRRRRRERRRRRRRRRRRRRRRBRERRRRRRRERRRRRRRRRRRRRRRRRRRRRRRRNRRNN

*custupdatel marketing customer update *
" "
" "
" "
» customer number {] *
" "
» name I] i
" "
L2 *
" ®
LA X222 X132 2 22 2 A 2 XXX S XXX 2 i R s Yl sE YR YL XY]

CUSTUPDATE2 is changed to reflect the 6 digit customer number, delete of
2IPCODE, and addition of AREA, because finance needs to be able to update
this new code.

AR AR IR AR 0000 00 00000 2000000000 0000 0E D000 DR 00 DR 0 00 0RO 0RO 00 01 00 00 0000 00 00 00 00 00 30 30 00 00 0 20 00 00 2000 00 00 90 00 00 90 00 24 00

*custupdate?2 finance customer update *
L] *
L] L]
o customer number [] o
L] *
» area |] »
* *
L] L]
L] L]
HRENRERBEBERRERRRERERERRNRRRRRRENRENN

CUSTUPDATE3 is changed to reflect the 6 digit customer number, delete of
ZIPCODE, and addition of AREA, because accounts payable needs to be able
to update all fields.

LYY ISR R AR A AR R X2 s s s e s Ryl ey Yy s Y]]

*custupdate3l accounts payable customer update *
" "
d customer number [] *
#* *
d name |] *
" *
d address {] i
#* L2
ol eity,state [] *
" L2
o area |] *
" L2
" L2
L2 L2
222222 YRS S22 SRR XTI RR YR YRS 22 Ry s s Rl Yy y]

These changes as well as the database changes are recorded in the
dictionary using DICTDBM.

Paper 3052 10 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

INTEREX 85

RARRRARARRBARARAARNRARAARAAAARARARNRARRRLARRNARN AR RARARRRAARAARARANARARARANARS

:run dictdbm.pub.sys

DICTIONARY/3000 HP322LL4A.02.01
PASSWORD FOR DICT.PUB>

FORMS ENTRY(Y/N)?>

> modify element
ELEMENT

cust-no

EDIT DESCRIPTION(Y/N)?> n

ELEMENT
CUST-NO
LONG NAME:
HEADING TEXT:
ENTRY TEXT:
EDIT MASK:
MEASUREMENT UNITS:
BLANK WHEN ZERO: NO

TYPE i

SIZE
DECIMAL

> ¢reate element
ELEMENT
LONG NAME
TYPE
SIZE
STORAGE LENGTH(6)

3 delete file
©FILE
ELEMENT

ENTRY DELETED
ELEMENT

> add file
FILE
ELEMENT
ELEMENT ALIAS
FIELD NUMBER
DESCRIPTION
ELEMENT

3 delete file
FILE
ELEMENT

ENTRY DELETED
ELEMENT

> add file
FILE
ELEMENT
ELEMENT ALIAS
FIELD NUMBER

Paper 3052

TYPE: SIZE:

i+ k

custupdate]d
zipcode

custupdate3
area

custupdate?
zipcode

custupdate?
area

11

DEC: LENGTH: COUNT:

0

k4

1

- {C) Hewlett-Packard Co. 1984

RESPONSIBILITY:

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP

DESCRIPTION
ELEMENT

> delete file
FILE customer
ELEMENT zipcode
ENTRY DELETED
ELEMENT

> add file
FILE customer
ELEMENT area
ELEMENT ALIAS
DESCRIPTION
ELEMENT

> exit

END OF PROGRAM

INTEREX 85

LEAZ 2RISR R s 2 2 A a2 222 2 X A XA 2RSSl

Next the database is unloaded using DICTDBU.

LX XXX 22 R X X2 a2 222 sxXex il i A A 2 2 R X2 R R 2]

run dictdbu.pub.sys

DICTIONARY /3000 DB UNLOADER HP322LLA.02.01 - {C) Hewlett-Packard

STORE FILE> mpestore

LIST FILE>

BASE> orders

BASE PASSWORD>
MODE> 1
UNLOAD AUTOMATIC MASTER SETS(N/Y)?>
UNLOAD DETAIL SETS BY CHAIN(Y/N)?>
UNLOAD EDIT(N/Y)?>
PROCESSING SETS
CUSTOMER M:2/100

2 ENTRIES UNLOADED IN <1 CPU-SEC
PARTS M:2/100

2 ENTRIES UNLOADED IN <1 CPU-SEC
ORDER A:2/100

AUTO NOT UNLOADED

INVENTORY D:3/108

3 ENTRIES UNLOADED IN <1 CPU-SEC
ORDERHEAD D:2/112

2 ENTRIES UNLOADED IN <1 CPU-SEC
ORDERLINE D:3/100

3 ENTRIES UNLOADED IN <1 CPU-SEC
UNLOAD COMPLETED
END OF PROGRAM

X2 E 2RSS SRS R R X R R R R Al R R X LR 2R L

Then the current database is purged using DBUTIL.

Paper 3052 12

-

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

(22222222222 R sl dddddddd il d sl sl dldldddddddlddddsddsddd]

run dbutil.pub.sys

HP32215B.04.61 IMAGE/3000: DBUTIL (C) COPYRIGHT HEWLETT-PACKARD
>>pur orders

Data base has been PURGED.

>>exit

END OF PROGRAM

.
RARRRRRRRRRRRRRRARR NN RN

Then the new database root file is created using DICTDEC.

(2222422 2 X Al sl ddds s sddddi il dddd sl es s sl el sy

run dictdbc.pub.sys

DICTIONARY/3000 DB CREATOR HP32244A.02.01 - (C) Hewlett-Packard

DICTIONARY PASSWORD>

BASE> orders

CONTROL LINE>

SCHEMA FILE>

LISTING FILE>

APPLY SECURITY JUST TO SET LEVEL(N/Y)?>

SCHEMA GENERATION

DBSCHEMA PROCESSOR

PAGE 1 HEWLETT-PACKARD 32215B.04.50 IMAGE/3000: DBSCHEMA
TUE, MAY 14, 1985, 9:21 AM (C) HEWLETT-PACKARD CO. 1978

BEGIN DATA BASE ORDERS;

PASSWORDS :
ITEMS:
AREA, X6 3
CITY-STATE, X20 H
CUST-NO, I2 :
DESCRIPTION, X20 H
LINE-NO, X2 :
LOCATION, X4 :
NAME, X20 H
ORDER-DATE, X6 3
ORDER-NO, X8 H
ORDER-STATUS, X2 H
PART-NUMBER, X8 H
QUANTITY, I2 3
STREET-ADDR, X20 3
SETS:
NAME : CUSTOMER, MANUAL H
ENTRY: CUST-NO (1),
NAME,
STREET-ADDR,
CITY-STATE,
AREA;
CAPACITY: 100;
NAME: PARTS, MANUAL H
ENTRY: PART-NUMBER (2),
DESCRIPTION;

CAPACITY: 100;

Paper 3052 i3

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

NAME: ORDER, AUTOMATIC ;
ENTRY: ORDER-NO (2);
CAPACITY: 100;
NAME: INVENTORY, DETAIL ;
ENTRY: PART-NUMBER (PARTS),
LOCATION,
QUANTITY;
CAPACITY: 100;
NAME: ORDERHEAD, DETAIL ;
ENTRY: ORDER-NO { ORDER),
CUST-NO { CUSTOMER),
ORDER-STATUS ,
ORDER-DATE ;
CAPACITY: 100;
NAME: ORDERLINE, DETAIL :
ENTRY: ORDER-NO (ORDER Y,
LINE-NO,
PART-NUMBER { PARTS Y,
QUANTITY;
CAPACITY: 100;
END.
DATA SET TYPE FLD PT ENTR MED CAPACITY BLK BLK DISC
NAME CNT CT LGTH REC FAC LGTH SPACE
CUSTOMER M 5 1 3 L 100 11 507 Ll
PARTS M 2 2 14 29 100 13 378 27
ORDER A1 2 4 19 100 20 1382 18
INVENTORY D 3 1 8 12 120 Lo 483 16
ORDERHEAD D 4 2 11 19 100 20 1382 18
ORDERLINE D 4 2 11 19 100 20 382 18

TOTAL DISC SECTORS INCLUDING ROOT: 152
NUMBER OF ERROR MESSAGES: 0O
ITEM NAME COUNT: 13 DATA SET COUNT: 6
ROOT LENGTH: 587 BUFFER LENGTH: 507 TRAILER LENGTH: 256
ROOT FILE ORDERS CREATED.
END OF PROGRAM

L2222 Rt il st sl X2yl

The new database is created using DBUTIL.

BRRABARAARRRARARRRRREERRBRRRBRRRRARRERRREERRRRBRERARBBRERBRRABRRBRRRERARRRRRRER

run dbutil.pub.sys
HP32215B.04.61 IMAGE/3000: DBUTII, (C) COPYRIGHT HEWLETT-PACKARD
>>cre orders
Data base ORDERS has been CREATED.
>>exit
END OF PROGRAM

RERRRARABRBRRRERERRRRRRRERRBRRRRRBERRERRBRBRBRRRHBBRRBERRRRRRRERRARRRRRRRRRRNER

The database is reloaded using DICTDBL.

ARBERBRARABRARRRARRRBERRARRRRRRRARRRRRARRRARARRARAARRRRRERERARRARRERARARARRRRRNR

run dictdbl.pub.sys

Paper 3052 14 WASHINGTON, D C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

DICTIONARY/3000 DB LOADER HP322L4L4A.02.01 - (C) Hewlett-Packard
STORE FILE> mpestore
LIST FILE>
BASE: ORDERS.CUSTOMIZ.MILLER
RUN MODE (LOAD/EDIT/SHOW/EXIT) »
NEW BASE NAME>
BASE PASSWORD>

MODE>
FAST 1/0(Y/N)?>

CUSTOMER M 2/100
2IPCODE ITEM NOT FOUND, NEW ITEM NAME> «cr*> = not reloaded

2 ENTRIES LOADED IN <1 CPU-SEC
PARTS M 2/100

2 ENTRIES LOADED IN <1 CPU-SEC
INVENTORY D 3/120

3 ENTRIES LOADED IN <1 CPU-SEC
ORDERHEAD D 2/100

2 ENTRIES LOADED IN <1 CPU-SEC
ORDERLINE D 3/100

3 ENTRIES LOADED IN <1 CPU-SEC
LOAD COMPLETED
END OF PROGRAM

ARARABRARARRRARARARARARRARAARAARRARRARARARARRARAAARRAARAARRRRARAXARRARARRRAARARN

Finally, the Transact program is recompiled and the new application is
implemented.

HRARARRBRARARRRARARAARRARRRARARARARRARARRARARAAAARARRARARARARARRARRARARARARRRR S

run trancomp.pub.sys

TRANSACT /3000 COMPILER HP322L7TA.02.02 - (C) Hewlett-Packard Co. 1984
SOURCE FILE> custup

LIST FILE>

CONTROL> nolist

TRANSACT/3000 COMPILER A.02.02 : TUE, MAY 1h, 1685, 9:32 AM COMPILED L
OF FILE CUSTUP.CUSTOMIZ.MILLER PAGE 1

COMPILING WITH OPTIONS: CODE,DICT,ERRS

CODE FILE STATUS: REPLACED

0 COMPILATION ERRORS

PROCESSOR TIME=00:00:08

END OF PROGRAM

.
BARARARRARARAARARRBRRRAARRARARARHAARRRRRARRARRRARRRRRARARARRRRRERRRRRRERRARRRRRR

DICTDBU and DICTDBL can not handle all types of element changes. For
example, numeric ascii will not be converted correctly by these utilities.
This is because IMAGE does not have a data type corresponding to numeri¢
ascii. DICTDBC creates an element defined as numeric ascii as an
alphanumeric element of type X. Thus, if CUST-NO were being changed from
9(U4) to 9(6), DICTDBU would unload it as X(4). DICTDBL would reload it as
X(6) causing the new field to be left justified with two spaces inserted
on the right. Transact would no longer be able to interpret the field as
numeric.

Paper 3052 15 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

Thus,when writing a custom application, avoid using data type 9 or write a
utility to convert data after DICTDBU has run and before DICTDBL has run.

USER EXITS

In general, there are two types of application development environments.
First there are application software companies who build application
gsolutions to sell to other companies. Second, there are companies who
build application solutions for use internally. Localization is attractive
to both environments. Ignoring the fact that the software is sold in one
case, both types of environments have a similar structure. There is a
central group responsible for maintaining and enhancing the core system.
There are one or more user organizations who accept the basic system
functionality, but who have unique needs from the other users. Until these
needs become the common needs of the majority of the system users, the
central group typically resists adding the functionality to the core
system.

If, however, the central group provides ways in which the individual users
can modify the system to include the functionality they need without
destroying the functionality of the core system, then both groups become
winners,

The concepts discussed earlier, plus the concept of user exits provide
this capability.

It is probably much easier for the software engineers developing software
to sell to build in user exits, since they are acutely aware of the many
unique demands their customers make.

It is no doubt much more difficult for a software engineer building
internal software to distinguish between capabilities that should be a
part of the core system versus capabilities that should be extensions or
localization of the core system, since his users are also internal.

Providing the capability for user exits and when to provide the capability
for user exits is up to the designer of the core system. For example, a
designer may only want to allow user intervention after data has been
entered. Another designer may want to allow user intervention before and
after data entry, as well as before and after database update.

Naturally, the more a designer provides this capability, the better the
possibility that the user can solve his unique problem outside of the core
system.

The example below illustrates one way to implement user exits within
Transact. It implements a structure that allows the user to do some
processing just after data has been entered.

RANBRRRRARRRRRBRRRRRBRRARRARBRRRBRNARREBRARRRRRBANRRRRRARBRARRARNRRARRARRRRRS

1 system custex,base=orders

2 ,vpls=formfile

3 ,file=formxref,exitxref;
Paper 3052 16

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

Y define(item) menuname x{16):

5 fkey 9(2):

6 screen x(16):

T lastkey i(l):

8 userexit-prog x(6):

9 userexit-marker @;

10 list menuname:

11 lastkey:

12 userexit-prog;
13

14 data menuname; <<to simulate transfer of control to this
15 subroutine>>

16 e

17 X222 22222 2222222222222 222 2222222 2 R X2 2 2 222 2 2 22 2 2 2 2 2 2 22 X} X]
18 Subroutine: to update customer information
19

20 input: menuname - contains the name of the screen to be displayed
21

22 output: none

23 2122222222 222222 2222222222 X222 X222 R X2 222 2 2 R X2 X222 2 2.2 22 % % 3
2y >>

25 list fkey:

26 screen;

27 list userexit-marker;

28 list(auto) custupd-global;

29 let (yes) = 1;

30 let (no) = 0;

31 let (error) = (no);

32 level;

33 list(auto)} customer;

34 if (error) = (no)

35 then
36 get(form) {menuname),init

37 ,window=(" ")

38 ,fkey=lastkey

39 ,autoread

40 else

41 get{form) (menuname)

42 ,fkey=lastkey

L3 ,autoread;

Ly if (lastkey) = 8

L5 then exit;

L6 set(match) list (menuname);

L7 get(serial) exitxref,list=(menuname,userexit-prog);
48 call (userexit-prog),data=userexit-marker;
49 if (error) = (yes)

50 then end;
51 if (lastkey) = 0
52 then perform modify
53 else

54 do

55 set(match) list (menuname);
56 let (fkey) = (lastkey);
57 set(match) list (fkey);

Paper 3052 17

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

58 get({serial) formxref,list=(menuname,fkey,screen);
59 reset(option) match;

60 perform modify;

61 doend;

62 end;

63

64 modify:

65

66 set(key) 1list {cust-no);

67 get customer,list=(@);

68 put (form) (screen),window={"update? - fl=yes, f2=no");
69 get(form) (screen),fl(autoread)=modify-f1
T0 ,f2=modify-£2;

71

.72 modify-f1:

73

T4 update customer,list=(@);

75

76 modify-£2:

77

78 end;

FRARBARARAARARRAARRARRARARARARARARRRARRRARRARRRARRRARRARRARRRRARRARRRARRARRARNARARRARS

The user exit is established in a way similar to that used to achieve
screen independence. A cross reference file is set up to contain the name
of the sub-program to be called based upon the name of the screen that the
program is currently processing.

The content of this cross-reference file is:

ARARRRARARNRRARRRRARRRRARARNARNRAARNRRRRR

MENUNAME : USEREXIT-PROG:
B e e m e cccccrt e cma e, = *
* CUSTUPDATEMM cul *

ARRARERERAERRRRARARAANAAARARARRRRARR

MENUNAME is the index into the program specifying the current menu or
form. USEREXIT-PROG contains the name of the Transact sub-program to be
called.

As this program illustrates, there can be some data defined within the
program for its own use (lines 10 thru 26). This data could also be
defined in the dictionary. There can also be global data that is of
importance to both the program and the user exit program (lines 28 thru
31). This data should be defined in the dictionary in order to make coding
of the user exit program easier. Included in this data are elements for
handling screen data input errors (validation) and the data the user wants
to add to the transaction. Finally, there is the dataset definition needed
specifically for this generic transaction, also defined in the dictionary
(line 33). The dictionary description of custupd-global and customer is
as follows:

RARRARBAERRARRAARARRARRARRRARARRARARARARRARARRARRARARAREAARARARRARRRARARARRARAR

FILE TYPE: RESPONSIBILITY:
CUSTUPD-GLOBAL FORM
Paper 3052 18

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP ’ INTEREX 85

ELEMENT (ALIAS): PROPERTIES : ELEMENT (PRIMARY) :
PASSWORD X (8,0,8) PASSWORD
ERROR I (4,0,2) ERROR
YES I (4,0,2) YES
NO I (L4,0,2) NO

FILE TYPE: RESPONSIBILITY:

CUSTOMER MAST
ELEMENT (AL1AS): PROPERTIES: ELEMENT (PRIMARY) :
CUST-NO 1+(6,0,4) CUST-NO
NAME X (20,0,20) NAME
STREET-ADDR X (20,0,20) STREET-ADDR
CITY-STATE X (20,0,20) CITY-STATE
AREA X (6,0,6) AREA

RERBRBRERBBRURRRRBERRABRRRRRRRRREBERBRRRBURBRRRRRARRERRRRRRRNRABRAARRRRARANS

Note that the user of the system has added the element PASSWORD to the
CUSTUPD-GLOBAL list. This element is not a part of the core application.

The program depends upon the existence of ERROR, YES, and NO as the way in
which the sub-program indicates to the main program that an error has been
detected. The main program initializes these variables in lines 29 to 31.

The program sets up a marker element which it uses to dencote the point in
the LIST register that the sub-program has access to (line 27 and u8).

The screen is displayed without erasing the information, if the user exit
program detected an error. Otherwise an initialized screen is displayed.
Lines 34 to 45 handle this.

Lines 46 to 48 implement the user exit by searching for a match on screen
name in the cross-reference file. This code and file could be expanded to
provide for multiple user exits during the same transacticn and to make a
user exit optional.

The user exit program follows. The user has decided to add a password to
the customer update menu and has added the logic to his sub-program to
validate the password.

RARRARARRNARARARARRARARRRAERRBARUHRRRARARRRARAARARARARARANRAERAS

1 system cul,vpls=formfile;
list(auto) custupd-global;

3 list(auto) customer;

4 let (error) = (no);

5 if (password) <> "OKAY"

6 then

7 do

8 set(form) *,window=(password,”invalid password");
9 let (error) = (yes);

10 doend;
11 exit;

RARARAARRRARARARRRAAARARERAARRRARARARARRRARARRARARARAARAAABHUNS

Paper 3052 19 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 S5

Note that the user exit program must contain the LIST definition
corresponding to the main program definition that occurs after the marker
item. Standardized procedures for communicating error conditions, etc.
must also exist.

The modified user version of the screen CUSTUPDATEMM and the dictionary
description of this screen follows:

LI AL AR 2 Rt R st A X At sl A il il sy yy)

*custupdatemm customer update main menu

enter customer number []
f1 - marketing {custupdatel)
f2 - finance {custupdate2)

£3 - accounts payable (custupdate3)

RAARBERRBRRBRRBAERAERRRRRBRRRRRRRRRRRRRRRRRRR RN RN

or

enter screen name []

password | |

2 T ¥ T X 2 X X & T & X X X X X ¥ X X X%
L I B Nk B BN B B B B B BN N R R B B BE R BE N 2

L2222 R R R 2 R R 2 2 A2 R X222 R R X 2 2 b 2 R 2R el 2 dl Y]

market- finance® accounts® * * * * exit *

"in » » payable * * * L] » L]
tX X222 TR L R 2 AR R22A TR A A R A R 2 s AR Xl Y y]

LXI X222 XL R AR R X2 X 2 2R 2 22 22 R R X 2 R R R R]t

FILE TYPE: RESPONSIBILITY:
CUSTUPDATEMM FORM
ELEMENT (ALIAS): PROPERTIES: ELEMENT (PRIMARY) :
CUST-NO 1+(6,0,4) CUST-NO
SCREEN X (16,0,16) SCREEN
PASSWORD X (8,0,8) PASSWORD

L2222 TR SRR RS2 X222 222 2 X2 22 R R R 2 2 2 X R X 2 R L))

TRANSACTIONS ACROSS MULTIPLE DATASETS

All of the above concepts are still valid even if the transaction affects
multiple datasets. The following program illustrates a way to write
generic code that accesses more than one dataset. This code could be
expanded to include the topics previously discussed to provide form
independence, user exits, etc.

Paper 3052 20 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

RARRRARARAARRARRRAARARRRAARARRARRARRRARARS

1 system addprt,base=orders

2 ,vpls=formfile;

3 list(auto) addpart-global;

y level;

5 list(auto) partvendors;

6 level;

T list (auto) inventory;

8 level;

9 list(auto) parts;

10 get(form) addpart,init;

11 put parts,list=(8);

12 move (global-part) = (part-number);
13 end(level);

14 move (part-number) = {global-part);
15 put inventory,list=(€);

16 end(level);

17 move (part-number) = (global-part);
18 put partvendors,list=(8);

19 end;

FEIE TR T A0 90 2090 20090 90 90 30 T 90 90 F 90 90 90 90 90 90 90 90 9 90 30 50 90 9 90 96 90 90 90 90 96 90 ¢ 9

The generic transaction adds a new record to the parts dataset, which is
the master dataset. It then adds a record to each of two detail sets,
inventory and partvendors. PART-NUMBER is a critical element and is common
to all three sets.

The dictionary description of the 1lists used by the program are as
follows:

090 9090 90 2090 30 90 30 90 90 90 90 20 90 30 90 30 90 9090 90 20 90 30 90 90 90 9090 90 30 90 90 20 90 20 90 08 90 90 00 08 30 90 0 0 20 90 36 S0 9030 00 30 96 0 08 08 96 90 96 2 90 96 96 3 9 2 0 B

FILE TYPE: RESPONSIBILITY:
ADDPART FORM
ELEMENT (ALIAS): PROPERT1ES: ELEMENT (PRIMARY):
PART-NUMBER X (8,0,8) PART-NUMBER
DESCRIPTION X (20,0,20) DESCRIPTION
LOCATION X (4,0,4) LOCATION
QUANTITY I (6,0,4) QUANTITY
VENDOR-CODE X (6,0,6) VENDOR -CODE
VENDOR-NAME X (20,0,20) VENDOR -NAME
FILE TYPE: RESPONSIBILITY:
ADDPART -GLOBAL FORM
ELEMENT (ALIAS): PROPERTIES: ELEMENT (PRIMARY) :
GLOBAL-PART X (8,0,8) GLOBAL - PART
FILE TYPE: RESPONSIBILITY:
INVENTORY DETL
ELEMENT (ALIAS): PROPERTIES: ELEMENT (PRIMARY) :
PART -NUMBER * X (8,0,8) PART-NUMBER

CHAIN MASTER SET: PARTS

Paper 3052 21 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

LOCATION X (4,0,4) LOCATION
QUANTITY I (6,0,k) QUANTITY
FILE TYPE: RESPONSIBILITY:
PARTS MAST
ELEMENT (ALIAS): PROPERTIES: ELEMENT (PRIMARY):
PART-NUMBER d X (8,0,8) PART-NUMBER
DESCRIPTION X (20,0,20) DESCRIPTION
FILE TYPE: RESPONSIBILITY:
PARTVENDORS DETL
ELEMENT (ALIAS): PROPERTIES ELEMENT (PRIMARY) :
PART-NUMBER . X (8,0,8) PART-NUMBER
CHAIN MASTER SET: PARTS
VENDOR-CODE X (6,0,6) VENDOR-CODE
VENDOR-NAME X (20,0,20) VENDOR-NAME

L2222 222222 22 XA d s s st s a2 22 22222 2 a2 X222

Note that the global definitions for this transaction include an element
called GLOBAL-PART. This element is used to store the value of PART-NUMBER
between dataset updates as explained below.

The form ADDPART looks like this:

(2 X222 222 2 2222 2 222 Xt XX s A XA dX 82 s Xi X2 222222222222 X222 X2 X3

*addpart add a part *
* »
» »
» part number | | »
» »
* description [| »
» »
* location { | »
* »
i quantity {] »
» »
» vendor code | | »
* »
» vendor name |] *
* »
* »
» »

(X222 RS R R X2 XXX s X2 s Xt XA s i i 2 A2 R i sl X

The key to understanding how to write generie code is to understand how
the VPLUS and IMAGE interface work with the LIST register.

The first thing to understand is that the LIST register can have as many
definitions of an element on it as wanted. However, Transact always
references the latest definition. Thus,the LIST(AUTO) for each dataset
that the transaction is to access, causes three definitions of PART-NUMBER
to be added to the LIST register.

Paper 3052 22 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 5

The VPLUS interface with the dictionary does not require use of the LIST=
option. If this is left off, Transact matches the elements that are a part
of the form with the current contents of the LIST register. These elements
can occur anywhere physically in the LIST register. Elements are resolved
by starting at the end (most recent change) of the LIST register, and
working back until the element definition is found (line 10).

The IMAGE interface through the LIST=(8), requires the element list to be
contiguous. Individual elements can not be listed, since this would defeat
the idea of creating custom code. Thus after updating the PARTS dataset
(line 11), the value of PART-NUMBER is saved (line 12), then all of the
PARTS dataset elements are removed (line 13), then the value of
PART-NUMBER is restored, which is now the PART-NUMBER defined for dataset
INVENTORY (line 14). A record is then added to the INVENTORY dataset.

Since PART-NUMBER has already been saved, it need not be saved again. All
of the elements that belong to the INVENTORY set are removed from the LIST
and then PART-NUMBER is restored, which now becomes the PART-NUMBER for
the PARTVENDORS set.

This same logic can be repeated any number of times. Similar logic also
handles data retrieval from different sets.

2
Paper 3052 3 WASHINGTON, D. C.

BAL TIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

3053. RECOVERY BY DESIGN / Surviving a Disaster

James A. Depp
UPTIME
4131-A Power Inn Road
Sacramento, California 95826

Overview of the Presentation:

A.) Do I really need protection/planning? Do disasters really
occur? Can it happen to me?
~ Anecdotes and experiences -
Why bother? How is it going to benefit me? How do I sell
the boss? Is there a payout?
OK - how do I do it? What's the blueprint?
Perspective - tasks/program and design considerations
1) Resources and difficulty in replacing
2) Equipment/Facility
a) Options
b) Agreements
¢) Recovery considerations
d) Design considerations
3) Data and Software
a) Recovery considerations
b) Design considerations

2]
~

(= N
~—

4) People

5) Communications
a) Human
b) Data

6) Supplies
E.) Question and Answer

CONTINGENCY PLANNING - WHY BOTHER - WHAT ARE THE BENEFITS?

The auditors insist on it, the user asks what happens to my operation
if the computer fails; the staff doesn’t like to think about it - a
dreaded event, not often acknowledged, but always a concern,
uncertainty, fear.

HOW DO I SELL THE BOSS? - the more tangible reasons for planning; the
ones that lead to top management commitment, and action? -

1) Protect your business - experience shows small to medium size
companies dependent on computer records may be bankrupt in
one to two weeks if they can’t access their information. At
best they will be crippled for months.

2) Protect the company’s market position and stock price since
improperly communicating the loss of computing resources
could cause loss of customers or adverse market reaction,

3) Reduced insurance - business failure insurance is carried by
many companies - protection of the business reduces the risk
and potentially the premiums.

k) Protection from legal redress - current legislation and

P 0
aper 3053 1 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GRQUP INTEREX 8BS

precedent allow stockholders to take civil action against
management for failure to properly protect the business from
potential threat.

5) Increased productivity and performance - close examination of
any operation from a different vantage point can result in
improvement. Recovery planning has resulted in reduced data
base size and content, improving response time. Data
communications have been reevaluated and streamlined causing
less frequent attention. Operations have been improved as
options were presented by the in depth survey.

6) Staff training opportunities are presented both in
preparation of the recovery stategy and in performing the
annual test. One operations supervisor and the operator who
brought their backup tapes for a test said this was more
valuable than HP coursework because they had full use and
control of the system, and had to set up and check all
aspects.

On a broader scale, contingency planning involves not only the data
processing arena. You will find that user support and the entire
business plans will follow more easily if the critical data is
available on a backup computer system.

Additionally, there are on-going benefits to the information systems
staff as well - briefly:

1) streamlined data center operations

2) streamlined business because it is examined

3) smooth, accurate response to minor failures

4) enhanced image within business organization

5) increased DP job satisfaction - reduced turnover

THE DISASTER RECQOVERY PROGRAM -

Not just a written plan, recovery is a program which is begun at a
peint in time, and which continues actively into the future. The
program objectives are:

1) Reduce potential losses to a level which the company
can absorb without endangering the business.

2) Create a plan immune to company change and growth.

3) Balance resources between program needs and other
competing development, operational and business needs.

A key part of the program is assessing the VALUE of the processing
rather than the cost, and to support and protect the people who will
be directly and indirectly involved in recovery.

DISASTER PLANNING: The strategy for reestablishing information
processing.

Disaster planning is an audit of the present to assess what will be
critically needed if disaster strikes - and to provide those things.
It is a list of tasks - strategic and tactical - using the resources

Paper 3053 2 WASHINGTON, D. €

BAL TIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

protected and available to recreate the processing environment. It is
organization of the ’significant few’ with others assisting so that
the recovery 1is smoothly and effectively executed as quickly as
possible. It is the testing of itself, routinely, to be certain that
the plan is always viable.

HOW IS IT DONE? - BLUEPRINTS
Steps to building a plan:

1) Top management commitment

2) Define critical applications with the users and gain
commitment.

3) Estimate the business value of the processing = cost of lost
processing.

4) Determine how long an outage ig tolerable

5) Determine the restoration period

6) Document requirements/assumptions with user concurrence.

Preparation:

1) Allocate staff to the planning process. You may, due to
limited internal resources, seek consulting assistance. But
be certain that the resulting strategy is specific to your
organization and not just a document.

2) Secure storage of vital records and resources. You may
already store your backup tapes offsite. There may be other
items to store, including a copy of the plan.

3) Confirm that your insurance coverage is sufficient and that
payment of the claim will be speedy. Also discuss the
insurance company’s actions if there is a disaster. In some
cases a partially damaged computer system was unavailable for
several days because the insurance company had not completed
their assessment.

4) Assess your documentation in its current form. Are the
routine operational activities in written form? Is the
source code organized and well commented? The desire here is
to utilize as much of the existing material as possible in
the plan formation, and vice versa. The impact of staff
turnover can also be minimized through this planning effort.

5) Itemize the services that will need to be supported for the
applications determined to be critical. These may be specific
data required, data communications, people, reports, etc.

6) Itemize the supplies which will be needed as forms, labels,
etc. and don’t forget such related equipment as bursters,
signature writers, and the like. You may later decide not to
provide some of these, but do so consciously.

Plan Elements:

Now is the time to begin the actual plan creation with its decision
making and refinement activity.

Paper 3053 3 WASHINGTON. D C

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

1) what is required? State the requirements as already
determined.

2) Where will the processing be done, and how?

3) Wwho will be responsible for recovery, and what aspects will
they perform? What are the limits to their activity?

4) Write the plan and the documentation.

5) Monitor the plan effectiveness and people availability at
least annually, revising the plan as required. For some
organizations, more frequent tests will be required.

PERSPECTIVE - nuts and bolts

Effective operational procedures and advance enlistment of assistance
can ensure the resource availability. Routine system backups will
place the software and data offsite, safe from the disaster which
destroys the processing base. Procedures for use of the tapes when
they return from storage protects these resources from loss,
particularly in a time of confusion. The successful recovery is
dependent upon people, data, equipment, site, communications, and
supplies availability. The discussion of these specifics will begin
with equipment and facility because the availability of these so
directly affects the others.

HARDWARE -

We recogize that equipment must be available, but where? Options
include the HP office, HP quick replacement, a reciprocal, a captive
hotsite, third party vendors, additional systems within the company
which are underutilized routinely. -OR- you might Jjoin a recovery
service which provides equipment, data center, staff, and testing -
the advantage is cost and availability - a system that can be reloaded
now, which 1is known available and has been tested, and which is
located near your people, regardless of where you have to put them.
And extra trained hands which don’t exist routinely can be made
available, as well.

Recovery Options might be ranked as follows:

Effectiveness Cost
-Dedicated/owned hotsite Excellent Very High
-Mobilized hotsite service Excellent Affordable
-Stationary recovery service hotsite Good Affordable
-HP Rush Replacement Varies Varies
-Third party hardware source Varies Varies
~Shell site Varies Varies
-Reciprocal agreements Marginal Low
-Service Bureaus Poor Varies
-Do Nothing ? 0

PRIOR ACREEMENTS:

Prior agreements are the only method for making hardware available
because capacity must be available, or paperwork completed in order to
have equipment delivered or made accessible now, rather than days
later. Any other business or organization with which you deal will

Paper 3053 L

WASHINGTON. O C

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

have their own c¢ontrary objectives when you need the system.
Agreements include:

1) contracts and frequent tests of reciprocals - remember
that both parties are developing and could cause the
change which would interfere with recovery.

2) pre-executed purchase orders with hardware suppliers.

3) wuritten statements, frequently reviewed, saying what
service could be provided on short notice by HP or other
of your own divisions.

4) Commitment of all involved to spend the money to test
regularly, which means not only the cost to go test, but
for the receiving facility to shrink and prepare for the
test. How many of you have run a test at the local HP
office of the commitment to make the machine available,
let alone actually bringing your system up there? What
about the local service bureau? Your reciprocal partner?
Why not?

HARDWARE DESIGN CONSIDERATIONS:

In general, standardize or document c¢arefully. HP hardware is
generally well understood in interfacing, use, capability. There is
nothing wrong with using foreign equipment, but the interfacing may be
unusual, so be sure it is documented. It will not be in the standard
HP manuals. And where specific hardware dependent patches to the
operating system or programming are required, put these in job
streams.

Examples include cabling to multiplexors/modems, the non-HP equipment
such as microcomputers and wordprocessors where pins 4,5,6 and 8 are
Jumped to 20. Multipoint printers over modems/multiplexors may
require pin 6 to be jumped.

Selection of peripherals, particularly for data communications, should
include the recovery consideration. Consider the ramifications of
antique, unique, or ultra-new hardware. If the computer is to autodial
the modem, and interrogate a remote source of data, it might be
preferable to use equipment with the ’AT’ type command structure,
since these modems are readily available, even in microcomputer
stores. Where multiplexors and high speed equipment is needed, choose
the company which has in place a 24 hour emergency replacement
strategy - we've only located one, so far.

FACILITY:

To have ready access to hardware is only part of the successful
recovery. How much planning was required when your own data center
was designed and built? The equipment needs specific electrical
characteristics, air conditioning, static protection, data
communications connections. Your staff will need work space,
lighting, water, rest room facilities, etc. It is well enough to say
that the equipment can be had reasonably quickly, but will the
facility be available to make the equipment usable?

P 0
aper 3053 5 WASHINGTON, D C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

FACILITY DESIGN CONSIDERATIONS:

When installing terminal wiring it would be preferable to terminate
individual terminal wiring remote to the computer room, and to bring
multiconductor cables into the machine. This is neater,and it gives a
remote tie-in location, carefully marked for clarity. Likewise,
modems can be installed 50’ from the computer, giving the possibility
that they might survive destruction of the system.

Power and power conditioning can likewise be protected and marked, as
well as having alternate sources of power identified and marked.

SOFTWARE AND DATA -

Data must be protected both against loss and inaccessibility. It is
the companion of software, which can be similarly protected.
Protection hinges on data and software storage. Options include:

Dump strategy and Offsite storage
enhanced by:
Remote data logging and Shadowing

DATA DESIGN CONSIDERATIONS:

The dump strategy includes full, partial, and selective dumps.
In each case there are a few watchouts:

- Do you label dump tapes? If so, stop immediately, since
these cannot be read.

- Do you read the output listing to note errors, problems, and
skipped files? This is not just the beginning or end of the
listing.

- Do you store the dump tapes securely while they await offsite
courier pickup?

- Are all files included such that program changes will
necessarily be dumped without communication to an operator
Jor special handling? This is particularly crucial if fourth
generation languages are in the hands of users.

- Are all segmented library based changes made though job
streams so that recovery of the system SL is reliable?

SOFTWARE DESIGN CONSIDERATIONS:

Consideration should be given to recovery when software strategies
are developed. This is not to say that anything is taboo, only that
the full impact be realized, and steps taken to prepare for disaster.

For example, if the system segmented library is used, the ¢cmmands to
place the application 1in the 1library should bLe in a clearly
documented, obviously located job stream so that the additicn of the
routines can be done by anyone. Consider a group SrJOBS.SYS. If
specific peripherals are accessed, identify them by class name, so
that the recovery system does not have to exactly match the regular
system, and also program the option of what to do if the device is not
the one identified.

Paper 30%3 6

WASHINGTON.D C

BALTIMORE WASHINGTON REGIONAL USERS GROWP INTEREX 85

The accounting structure is critical to recovery ~ MPE V/E will build
the structure as files are restored - but what of the user defined
commands (UDCs)? We continue to recommend the use of the account
building {BULDACCT) routines * and apparently others do as well, since
the MPE V/E versions are available.

PEOPLE:

No matter how automated, or how labor intensive the business it will,
eventually, resolve itself to people. To a greater or lesser extent,
your users are dependent upon your skills and forethought to provide
the computer tool to them. You, the significant few, provide, support
and develop computer resources.

ORCHESTRATING AND PROTECTING THE PEOPLE -

We place significant emphasis upon four aspects‘ of the people and
their organization:

1) Have enough people -- identify in advance the people outside
of the ’'significant few’ who have skills, interest, and
avallability to help through the days and weeks of a
disaster. These may be purchasing, vendors, HP staff, other
administrative types, consultants, etc. Recovery services
should provide staff as well as the recovery hardware.

2} Define the roles, interrelationships, and training so that
these people can all work together. Clear procedures are
essential since some staff members may not be available.

3) Provide for the personal and family needs of these people so
that if the same disaster disrupts their home and the
business they are quickly available to the business. This
means that key insurance, construction, legal, financial
resources be made available to them.

4} Write it all down, so no one is uninformed, and ptovide the
plan to all involved for review at each annual or more
frequent test, as well as when it is initially put into
service.

COMMUNICATIONS
Of the Human sort:

During a disaster 1is not the time to establish who speaks for the
company to outside parties. Nor is it the time to try to handle all
the internal communication with users. Establish people in advance to
fill such roles, and then direct all inquiries to them during the
disaster.

0f the data sort:
Whereas in normal operation it is common that all users have access at

any time to the system, this might not be true during a disaster. If
multiplexor/modems are a key part of the network, it may be

Paper 3053 7

WASHINGTON, D. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

economically best to time slice a single communications link during a
disaster, with the East Coast connected in the morning, the West Coast
in the afternoon, or two hour rotations, etc. People are able to
adjust for a reasonable length of time in a disaster.

Paper 3053 8 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

SUPPLIES

Supply bottlenecks can be audited with every routine order, and the
supplier contacted to identify and perhaps work out delays. The
delays which cannot be avoided point to supplies which should be
stored offsite in appropriate quantity.

Offsite storage of supplies may be possible with the supplier, which
also provides inventory rotation. Movers and other storage companies
often provide such service. Data storage firms are routinely
providing secure storage of supplies as well as tapes.

A consideration in forms design and programming might be to provide a
method of printing on blank paper particular information normally
provided by the form, such as your company name and address on
invoices. This would permit the emergency use of blank paper if
required.

Summary:

In all of the areas noted, we can give many examples and options. The
intent of this presentation is to spark interest in:

1) Evaluating the value of the processing for which you are
responsible

2) Reviewing the advantages - protecting the business, the
market and stock positions, management from legal actions -
improvements in productivity, system performance, and staff
capabilities.

3) 1Identifying and supporting the people who are the key to a
successful recovery.

You have created a data processing resource to your company which is a
valuable resource, and the effort expended deserves the protection
provided by effective, well thought out contingency plans. The
profitability and, perhaps, the survival of the company depend upon
it.

Other reading:

(1) Heidner, Dennis, "Disaster Planning and Recovery",
Proceedings 1984 International Meeting HP3000 IUG, Anaheim,
California,February 26-March 2, 198L4

(2) Savaiano, Richard A. "Disaster Recovery - Planning for the
Unplanned”, Proceedings 1984 International Meeting HP3000
IUG, Anaheim, California,February 26-March 2, 1984

(3) Lord, Kenniston W., Jr., The Data Center Disaster
Consultant,Prentice Hall,Englewood Cliffs,New Jersey

(4) Disaster Recovery Planning Tools,UP TIME, Sacramento,
California, 916-454-4171

Paper 3053 9

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX89

kind of behavior. Witness the great run on the purchase of
personal computers. It is the new way of keeping up with the
Joneses. We seem to enjoy being a "nation of sheep”. Sometimes,
we fall into line when we don’t know what the line is for.
Somehow, we have got the idea that there is something inherently
American about following the lead of others

On the other hand, we must acknowledge the legitimate informa-
tion explosion of our time, the result of advanced research
techniques and technical processing and record-keeping systems.
This is important to us as individuals and as a nation. The The
problem is that everyone wnats to get in on the act and foist off
on the public any notion of information they may have.

Information, as defined by one dictionary, is communication of
knowledge, or knowledge derived from study, experience or
instruction. In other words, one is gleaning something new from
reading, listening or observing. Most of the time what is passed
off as information provides nothing new. Quite often, it is
Justified by saying it is being presented in a new and more
meaningful way. There is some doubt in the mind of the writer
that presenting meaningless material in a "meaningful” way makes
the content any more valuable,

While the scientific wizards and technical experts continue their
adventures in the realms of electro-mechanics and the
transmission of data, I think it is incumbent upon those of us
who are concerned with human behavior and mental hygiene to point
out the hazards of this unhealthy emphasis on information
gathering. While we are looking for more and better ways to
collect, process and present data, we need to look at the human
side of the issue. The problems encountered by human beings in
relation to the information explosion may be classified in two
groups: (1) Physiological {2) Psychological

The first group have to do with the sensory system of the human
being and its capacity for handling stimulation. The second
group have to do with human reactions to pressures imposed by the
situation. Several points need to be addressed relative to each.

In order to understand what happens to the human being physio-
logically, it might be good to look at the physical side for some
examples from which we can make observations about the
ccharacteristics of an individual physiologically.

From the standpoint of learning and making use of information,
the human is a sensory system or sensory being. It is through
use of the sensory systems that one learns about the environment
and how to deal with it. Physically speaking, all systems in the
human body have limitations. They are inherent in the structure.
For example, there is a limit to the strnegth an individual has
available for accomplishing work. The strength is related to the
general condition, or health of the body. This, in turn , is

Paper 3059 2 WASHINGTON, D. C.

BALTIMORE WA SHINGTON REGIONAL USERS GROUP INTEREX8 5

determined by genetic heritage, care of the body in terms of
nutrition, exercise, rest and freedom from disease.

Obviously, & person who is suffering from a debilitating disease
will not be able to perform feats of strength that might be
within his power when his health is sound. Neither can a person
perform feats of strength that require extra xertion when he is
already weakened due to long periods of exertion. These
statements are easily understood and accepted. What is not so
easy to understand and accept is that human beings have
limitations intellectually and physiologically when it comes to
handling information.

The point it that human beings can be incapacitated by being
exposed to too much information.

1t has been well established that the average person in his youth
can learn only so much about a given topic in a given period of
time. This is the very essence of the concept of curriculum
development. We know how many repititions are required for a
child to learn to count. We know how long it takes an average
child to learn the multiplication tables. We take these bits of
information along with other knowledge about the principles of
learning and plan curricula accordingly. When we become adults,
we forget the limitations we have and ignore general principles
of learning and expect to accomplish the impossible.

If we present too many items for learning, the flow of informa-
tion given interferes with the learning process and inhibits
learning. If we present too many unrelated items for learning in
a compressed period of time, negative interference may keep any
learning from taking place.

So it is with the handling of information. If we overload a
person with too much information, his ability to absorb it,
digest it, file it away for future reference and recall it when
the occasion demands will be hampered.

Another physiological problem arises when we assume that all
people learn equally well through the same channels. Some of us,
for exai:ple, are auditory learners. We tend to remember a great
deal of what we hear. Others are visual learners. We tend to
rememk.:r better the things we read or see. In many cases, it
seems those who are responsible for the education of adults in
Jjob situations make no allowances for these differences in human
beings.

We need to keep in mind also that the human mind has limitations
as to the amount of input it can handle with dispatch. It has to
develop its own filing system and methods of retrieval. It has
to relate information received in such ways as to make sense of
the total storehouse and organize it so as to have a useful body
of knowledge.

Paper 3059 3

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

Rot all of man’s information handling responsibilities can be
turned over to machines and electronic systems. In fact, there
is grave concern on the part of some educators that "real” educa-
tion is being neglected in order to teach computer literacy and
usage. It is as though some hope to substitute the computer for
the mind. Why learn how to handle numbers if the computer can
handle them for you? You don’t really need to learn about
algorithms and functions because the time is coming when we will
not be re- quired to think at all. Just get the facts, ma’m, and
feed them into the computer. Presto, the answer is there. It
will not be as simple as that.

The computer is a tool to be used by a thinking mind, not one
that has been taught that it doesn’t need to think.

The final point to be made about the physiological aspects of the
human mind in relation to the barrage of information thrown its
way has to do with confusion that results.

It is well known and well accepted that the human sensory system
can be rendered inoperational by being deprived of stimulation.
can be rendered inoperational by being deprived of stimulation.
What is not so well known is that it can be rendered inopera-
tional by being bombarded by too many stimuli. In the former
case, many studies have been done showing that disorientation
takes place in a person when he is placed in a vacuum where there
is no light or sound and where he does not feel any pressure or
sense of cold or heat.

The human being depends on sensory stimulation to guide him into
activity and help him determine his course of action. When he
has no feedback from his environment, he does not know what to do
with his limbs. If your eyes don’'t see and your ears don’t hear
and you get no clues as to whether you are in a friendly or
unfriendly atmosphere, your mind becomes confused and does not
know what to do.

Conversely, a mind that is beset with too many stimuli becomes
confused and searches for assistance. The mind apparently can
handle this up to a point. It can ignore some of the stimuli,
but if there are too many to ignore or they are too intense, the
mind becomes disoriented and leaves the field, so to speak.
Sometimes, however, even though it attempts to leave the field,
it takes the impressions and continuing onslaught of stimuli with
it and becomes totally confused and develops irrational responses
to all stimuli. Then, we have on our hands a person who is emo-
tionally and/or mentally unstable and must be cared for by some-
one else.

It should be obvious to any thinking person that the implications
for mental health from the standpoint of physiological well-being
are too great to ignore. That brings us to the psychological
problems. These are what give us so much trouble individually in
our day-to-day activities. It goes without saying that we have a

Paper 3059 4 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

great need for information for a number of reasons. We have
decisions to make every day, in business and in personal matters.
No one wants to make decisions without facts to support them. On
the other hand, we can have too much information for our own
good. There are several areas of cncern for the person who is
interested in mental health. We will look at them in the
following order:

(1) Fear of having ¢too 1little information (2) Fear of
expressing one’s self creatively (3) Fear of falling behind in
one's profession (4) Fear of being ill-informed.

First, the fear of having too little information. This seems to
be somewhat of a paradox on the face of it. We have been talking
about having too much information to deal with and now we are
saying this causes us to fear having too little.

A closer loock will show why this happens. The very fact that
there is so much information available today can make us feel
that we do not have enough. We can get to the point where we
feel that if we wait one more day or read one more journal, we
will know enough to act. Meanwhile, we become paralyzed into
inaction. We become fearful about making a decision. We never
have enough information. Something is bound to be revealed
tomorrow that makes what we now know obsolete. This can be
dangerous to an individual in a business for obvious reasons.
One is expected to stay up with what is going on and one is
expected to make decisions readily and rapidly in business
situations. To be rendered unable to make decisions is the worst
thing that can happen to a person who is in a decision- making
position or Jjust has to make decisions concerning his own job
from day to day.

Second, it can interfere with one'’s creative activity. We can
become fearful of introducing new ideas simply because we are
afraid what we have to say would not be consistent with today’s
level of knowledge about the subject. People who are in a high
tech field are there usually because they are creative people.
They are able to make contributions to a business other than just
filling a job and doing what they are told. When they lose this
ability, or willingness to explore new ideas out of far they will
be ridiculed, they are not worth as much to their company. This,
of course, effectively limits their usefulness and weakens their
position with the company as far as advancement is concerned.

Third, the plethora of information that besieges us today can
cause an employee to become so fearful that he will not be able
to keep up in his profession that he may become constrained to
try something different, giving up all of his training and
leaving a job he may be doing very well, simply because he feels
he is falling behind others with whom he works. He may not be
able to see that he is not falling behind, that all are bothered
by the same feelings. In such cases, it doesn’t matter that he

Paper 3059 5

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

isn’t falling behind. What seems to matter is the way he feels
about it. And human beings quite often sell themselves short.

Finally, a person may come to feel so ill-informed that he
becomes uncomfortable in any situation that involves other
people, whether it is in his business 1life or in social
situations. This does not have to do with thinking he is wrong
about certain things, necessarily; but rather that he simply does
not know enough. It may cause him to spend an inordinate amount
of time +trying to be a well-informed person, even to the
detriment of his personal, social and business life. The time
that he should be spending interacting with others is spent in
isolation trying to overcome what he perceives to be his
shortcomings.

Hopefully, these words of caution to those caught in the
information deluge will suffice to make them take a realistic
look at how they stand. If changes in thinking seem to be in
order, it is hoped that readers will take corrective action.

Paper 3059 6 WASHINGTON, D. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

3060. Response Time: Speeding Up The Man-Machine Interface

Tony Engberg
R&D Section Manager
ITG Performance Technology Center
Hewlett Packard Company
Cupertino, California

1. Introduction

Late in the fall of 1983, a small group of engineers tras gathered
together at HP Laboratories for the express purpose of characterizing
the utilization and performance profiles of HP 3000 systems throughout
the world. Using an automated data collection package (about which you
will be hearing more in the coming months), and a set of survey forms
designed to collect information of a qualitative nature , this team
amassed a sizable cllection of data which profiles, quite clearly, the
uses which our customers make of our systems, and the manner in which
our systems reponds to those uses. The results of the study have been
far-reaching; they have affected the design of future HP systems, they
have provided the basis for new tools for customers and HP engineers,
and they have determined the directions being taken by many of our
product lines. Most importantly, however, they have shown what is, and
is not, of importance to our costomers when purchasing and using our
systems and system components. One of the study’s findings, for example
was that, when it comes to assessing system performance, the metrice
most users consider important is response time. This paper will discuss
response time in a manner which will allow the reader to fully
understand the many factors which have an impact upon it, and which
will guide those concerned with improving response time characteristics
in applying their efforts most effectively.

I11. Definitions
Although it is often possible to carry on a discussion of some concept
without providing a rigid definition of the subject at hand, this is
not one of those times. Actually, this is and is not one of those
times, but you’ll have to bear with me in order to see what I mean. So,
before proceeding on, answer the following question:

"What is the definition of response time?"

Now, consider the following answers to the proceeding question:

1. Resonse time is the time it takes the system to respond to a user’s
request.

2. Response time 1is a measured interval which begins when an

interactive user transmits a record to the system (by striking the
carriage return key, or ENTER key, or what-have-you), and which ends

Paper 3060 1

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

when the system sends the first character back in response to the
user.

3. Response time 1is a measured interval which begins when an
interactive user transmits a record to the system (by striking the
carriage return key, or ENTER key, or what-have-you), and which ends
when the system is again ready to receive more data from the user.
These three definitions represent those most frequently given by
designers, programmers, and end-users whom I have queried about
response time. Let’s examine them in an effort to distill a single
definition of this important metric.

"Response time is the time it takes the system to respond to a user’s
request.” While intuitively appealing, this definition leaves much to
desired. It is ambiguous. What are the bounds which define the "time"
it takes a system to respond? What is a ‘'user request”? What
constitutes a response from the system?

I can here the grumbling already. Most people who provide this
definition assume that there is a mutual understanding of the bounds
upon the time interval, and that a "user request” is always understood
to be an interactive transaction, and that system responseis always
clearly delineated. Believe me, this is not the case. The second and
third definitions provide but two of the myriad ways in which the
response time interval can be, and is, quantified. A "user request”, in
many dicussions, includes the submission of a batch job to the system.
The second and third definitions also indicate two differing views of
what constitutes a response from the system (i.c., first character or
ability to continue). Our ability to improve response time will depend
heavily upon our ability to unambiguously define that concept in a
matter which will permit measurement. If we cannot measure response
time we cannot discuss optimization, except in the most qualitative
sense. Let’s move on, and examine the second definition.

"Response time is a measured interval which begins when an interactive
user transmits a record to the system (by striking the carriage return
key, or ENTER key, or what-have-you), and which ends when the system
sends the first character back in response to the user.” 1Is this
definition, known as the "transmit-to-first-response” definition for
response time, better than the first? It certainly removes much of the
ambiguity. The time interval is clearly defined; it could be measured
with a stopwatch. "User request” has been limited to an interactive
transaction. The transmission of a character back from the system to
the terminal has been selected as the delimiter for system response.
What more could one ask?

Quite a bit, I'm afraid. Consider the system designer who has taken
into account the qualitative nature of response time by incorporating a
message intended to sooth the impatient user into the processing
stream. This is a common tactic. The computer onboard the fictitious
starship Enterprise used it ("Working..."), the HP2647 games tape used
it ("CRUNCH*CRUNCH*CRUNCH"), and many user programs use it. Should we
consider system responsiveness to be delimited by the printing of such
a message? Clearly not.

Paper 3060 2
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

“Wait a minute”, I hear you grumbling again, “that's easily handled.
Simply use the first character following completion of processing as
the delimiter.” Good suggestion, but this still leaves a problem. What
if the system has insufficient resources (CPU, memory, I/0, or others)
to display the entire response quickly. Think of the times you have
seen a screen or so of data come up, then waited as the system went off
and did other thingsbefore finishing with your output. Think of the
stories you’'ve heard about cursors pausing in mid-screen, then moving
on. It is reasonable to measure the response time interval up to only
the display of the first character in such cases? I doubt if most entry
clerks would think so. Let's try the third definition and see if we can
find a better means of describing response time.

"Response time is a measured interval which ! -gins when an interactive
user transmits a rcord to the system (by striking the carriage return
key, or ENTER key, or what-have-you), and which ends when the system is
ready to receive more data from the user.” This is the
"transmit-to-read” definition of response time, and it was formulated
to overcome many of the objections raised to the preceeding two
definitions. It is less nebulous in phrasing than the first definition,
and it gets around the “intermediate output” and "delayed response"
Shortcomings of the second definition. So, at last, we have a usable,
working definition of response time.

Well, not quite. This last definition has some pitfalls of its own. To
begin with, it is very much dependent upon variables introduced by the
designer and programmer, and by the terminal equipment used. Consider,
for example, the implementaion of an application using fairly verbose
data entry screens. Should the time required to paint a screen be
included in the sytem response time? Many users would say yes, while
many others (interested only in how fast the system actually took to
handle the last request) would say no. For purposes of comparison it
is often preferable to measure only the time spent by the system,
excluding the terminal I/0 time, processing the request.

Now, your probably wondering what this continual refutation of
definitions is all about, and wishing that I would just come out and
tell you what response time is. Well, I can’t, 1’11 pause while the
grumbling subsides to a dull roar. You see, response time is really a
qualitative concept which can only be quantified in the light of a
specific application or environment. That is to say, it's definition
must vary with the application, user needs, and system. At its root,
response time is a perception (hence the tricks mentioned above for
stalling the user). Only you can decide what sould be measured and
called "response time" in your environment. Let me give you some
further examples of the diversity for which you must account.

1. You are running a shop in which data entry clerks are using the
system to key in short records which the sytem then validates before
allowing further entry. Response time is characterized as the amount
of time the entry clerk must wait before being able to proceed with
the next record, that is, transmit-to-read.

Paper 3060 3

WASHINGTON. D C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

2. Your system has an on-line document look-up system. Those needing to
see a particular work enter a few key words, hit carrige return, and
wait until the document is found and displayed before them. They
peruse the located text, determine its applicability to their task,
then print it if they need a copy. Response time is measured from
the point at which the carrige return key is struck until the system
starts to print out the document (i.e.,transmit-to-first-response).

3. You tag shipments with special weight and handling stickers produced
by the system. A crate rolls up to an entry station, its contents is
read in by a clerk who runs a wand over a label on the crate, it is
weighed, and special handling instructions are keyed into the
system. The system takes these inputs and generates a tag which is
taken from a local printer and applied to the crate immediately.
Response time is measured as the interval extending from
transmission of the descriptive data to completion of the printing
of the lable.

It must be pointed out at this juncture that, while you are defining
response time in your environment, you must consider not only what
interval to measure, but what tolerance you can allow (how much
variance around the average, if you will). Why is this important?
Consider the data entry shop described above in the first example.
Let’s say that the average response time is 1.5 seconds. We got this
average by measuring ten separate transactions; the times recorded
ranged from .1 seconds out to U seconds. Although the average may be
quite adequate for the type of work being done, the variance may be
totally unacceptable. Data entry clerks are slowed, in many cases, when
they can not establish a rhythm. Reporting response time as an average
is all well and good, but pay attention to the other details of import.
In short, realize that you are dealing with perceptions, and decide
what, and how, to measure accordingly. Now, before proceeding, think
about your shop, your applications, and work out the points you would
choose to delimit response time if you had to measure it. Also, before
proceeding, analyze the amount of variability which your applications
can tolerate in response time. This last challenge can be met, in a
somewhat rough way, by simply estimating what an acceptable response
time would be, and what an unacceptable deviation from that response
time would be. Once you’'ve worked this out, proceed.

1I11. Components
No matter how you have chosen to define response time, the following
formula c¢an be employed in any effort to optimize it, since the
parameters within the formula can be defined to include only those
items which fall within your response time definition:

RT = the time that a request spends in the systenm,
therefore,

RT = T¢ + Ti/o ¢+ Tm + T1 - Tovl

where:

Paper 3060 h

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

RT = response time

Tc = time spent at the CPU

Ti/o = time spent in the 1/0 system

Tm = time spent waiting on memory management

Tl = time spent waiting for lock and latches

Tovl = time spent overlapping functions (such as CPU & 1/0)

Note that the above times can be broken down even further, as folows!

Te = Te{qg) + Tels)
Tc{q) = time spent waiting for the CPU
Tc(s) = time spent being serviced by the CPU
Ti/o = Ti/ol(q) + Ti/o(s)
Ti/o(q) = time spent waiting for the 1/0 system
Ti/o(s) = time spent being serviced by the I/0 system

1]

Tm = Tm{q)

Tm(q) = time spent waiting for memory

"

Tl = Tl{q)

13

Tl{q) = time spent waiting for locks and latches
Once response time has been broken down into its component parts,

as above, analysis and optimization become easier. Observe that

each component is affected by system loading. Thus, the time spent
at a particular terminal waiting for the CPU will be a function

of what other processes in the system are contending for the CPU,
what their resource consumption profiles look like (e.g., how much
CPU do they consume at a time), and their priorities relative to
that of the process corresponding to the terminal in question. It is
not my intent here to provide a full description of all the items
which affect each component, but merely to describe those which have
the greatest impact on response time and to suggest those things you
ought to be thinking about when considering ways to minimize this
impact.

IV. Tclq) ,

CPU time c¢an, as we have secert, be described in terms of two
components: gqueueing time, Tc(q), and serving time, Tc(s). The
time spent queued for the CPU will depend upon a number of
things, most important of which are the priority of the process
waiting for the CPU, the lenth of the queue of processes of egqual
or higher priority, the service times attached to those processes
ahead of you in the queue, and the rate at which higher priority
processes are arriving at the CPU. Let’s look at each of these

in turn.)

First, the priority of your process will determine where in the
dispatch queue (the line of processes waiting for the CPU) your
process “gets in line”. An excellent discussion of how your
priority is set, and the impacts of other processes upon your
ability to compete for the CPU, is provided in a paper on this
subject being delivered at these same proceedings by Dave Beasley.
Let it suffice here to simply realize that:

Paper 3060 5

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

1. In order to reduce queueing delay, you should be at the highest
possible priority. As you compete with process of equal or
or higher priority, your time spent in the dispatch queue will
lengthen, and so will your response time.

2. As you c¢ompete with processes of equal or higher priority,
your response time will, most likely, increase in variance.
This increase is due to the lack of similarity in resource
consumption profiles. In short, the more processes, the more
likely there is to be variability in the amount of CPU time each
demands .

If response time for a particular application is c¢ritical, that
application should be favored when entered in the dispatch queue.
This can be done in several ways, including manipulation of the
queueing structure (via the TUNE command) or programatically
(through such mechanisms as the GETPRIORITY intrinsic). The latter
will also reduce the variance in response time in most cases.
REMEMBER, however, that FAVORING ONE PROCESS (or process set)

WILL IMPACT OTHERS. The MPE operating system has been designed

to treat all interactive activity equally, and to permit the user
to decide how much to favor CPU-bound processes (again, via the
TUNE command). In an environment in which the object is to optimize
response time for all processes, and in which multiple applications
are running concurrently, tricks such as priority adjustments are
not the answer.

The second item to be considered was the length of the gqueue of
process of equal or higher priority waiting for the CPU. We've
already discussed one way to shorten the line in front of you,

and mentioned the problems which this can cause. You should realize,
however, that applications which don’t need priority treatment

can interfere with those that do. For example, batch jobs which
are sharing a resource with interactive process can (and often do)
reach prioritylevels which allow them to line up high in the
dispatch queue. Again, I refer you to Dave Beasley’s paper for a
discussion of this phenomenon. I recommend strongly that, in an
environment in which response time is crucial, you fully

evaluate the work which is being done on the system and the manner
in which processes interact.

The next item, service times of processes ahead of you in the
dispatch queue, is one over which you have little control.
Techniques and tools exist for measuring these times, but these

are not currently available to the user community. The best you can
hope for is that each process ahead of you has been coded by
someone who has optimized for Tc(s) (see below), so that they get
in and out as quickly, and efficiently, as possible.

Finally, the arrival rates of processes at a higher priority
than yours to the dispatch queue will directly impact the value
of Tec(q) for your process. In most cases this should not be a
problem, provided that you understand the use of the TUNE
command, and set your queue size, queue overlap, and the average

Paper 3660 6

WASHINGTON, 0. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

short transaction time intelligently (and don’t have someone else
calling GETPRIORITY).

V. Te(s)

Once you've done all you can to reduce the amount of time you
spend waiting in the dispatch queue, the next item of interest
is the amount of time you spend actually using the CPU. The

key concern here is pathlength; you don’t want to waste any time
when you are in CPU. Remember, the Tc(q) of other persons on the
system is dependent upon how long you hold this resource.

How do you go about reducing Tc(s)? The answer is, of course, to
code efficiently from the start. The answer is, also, to isolate
those portions of your code in which you spend the most time, and
to make these sections as efficient as possible. The best way to

do this is through the use of a tool such as APS/3000 (often called
"SAMPLER"), which will provide execution traces of your programs
which show the fequency of time spent executing within specific
ranges of instructions. This will enable you to isolate the

most heavily used sections of your code and optimize the algorithms
which you use in these sections.

VI. Ti/o(q)

Let’s move out of the CPU now, and over to the I/O system. The
amount of time you spent queued for I/0 depends upon a number

of things, most important of which are the priority of your I/O
request (for disc I/0), the length of the queue in which you are
waiting (which, in turn, depends upon the arrival rate to the
queue), and the Ti/o(s)’s of the requests ahead of you. For the
purposes of this discussion I will use disc as the I/0O device for
which you are waiting. Disc is the most complex case (since it is
shared and prioritized); other devices can be understood fairly
quickly once discs have been grasped.

Your place in the queue for disc I/O depends upon the priority

at which your process is running. This really is a priority-based
system, and you have to be concerned about where you are running.
Section IV has already covered this area.

The length of the queue in which you are waiting will depend upon
the number of I/0 requests which have been directed to the device
upon which you are queue, and the time required to service those
requests. This means two things. First, it is

imperative that you spread your I/0 across multiple drives, since
the more requests you direct to a single disc the longer the queue
on that drive will become. Second, you should attempt to localize
your I/0 (reducing seek time) as much as possible on a
drive-by-drive basis. How do you do all this? You ballance your
discs by splitting files which see heavy access across multiple
drives (particularly file which tend to be accessed in sets). You
localize your 1/0 by placing the most heavily accessed files in
¢lose proximity upon your drives (preferably centered on the disc).

Paper 3060 7

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

1 real{ze that thie latter activity is an extremely painful one
to undertake, since it requires successive partial RESTORE’s to
specific devices. It is, nonetheless, one means of reducing geek
time. The service time of requests ahead of you in the queue is,
as with Tc(s), something over which you have little control. The
next section will discuss this topic.

VIii. Ti/o(s)

How long you spend receiving service from the I/0 system is a
function of the speed of the device which you are utilizing, the

size of the request you are making, the efficiency of your request,
and whether (in the case of disc) your request can be resolved

in cache. The speed of the device is a given; it can be reduced

only by substituting a faster device (although the efficiency of

your 1/0 request is related to the device’s physical characteristics).
Those with critical response time concerns might review their
hardwere configuration in this area, since such items as transmission
speeds can have a very strong effect upon response time (depending
upon how you've defined it).

The size of a given I/0 request within a transaction, and the
efficiency

of that request, will have a definite impact upon service time.
Specific disc drives, for example, can retrieve and transmit data
much more efficiently within given size limitations. The file
system (which most end-users would consider part of the 1/0 chain}
will respond much more quickly to certain types of I/0 requests
than others{e.g., unblocked, NOBUF transfers vs. blocked, buffered).
The trick here is to examine the I/0 which you are doing, and don’t
assume that defaults are always the best way to go. Again, try to
spread your access across drives, and localize the targets of

your accesses.

Resolution of read requests in memory-based cache obviously shortens
the I/0 service time considerably. Realize, however, that write request
must, of necessity, cause cache domains to be flushed. One way,

in gome cases, to reduce time spent in the I/0 system is to

localize your write-intensive files on specific drives, and to turn
cache off on those drives. This requires experiment, but it is

worth looking into if you have a sufficient number of discs to

to allow it (remembering the impact of long queue lengths for any
device). A side benifit may be a reduction in the amount of CPU
resource expended to manage the cache (reducing, possibly, Tc{q).

Viii. Tm(q)

The amount of time you spend queue for memory will depend on your
priority (of course) and the amount of time required to find
memory space for your process.

When the dispatcher selects your process to run (based upon
your priority) a check is made to see that you have everything
required by your process to run in memory (e.g., stack and code

Paper 3060 8 WASHINGTON, D. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

segment). If you do not, your process must wait while the memory
manager attempts to make space available. Thus, your priority
determines when the system begins to look for space for you. Once
the search has begun, however, other factors come into play.

The memory manager will read down a list which contains those
segments which you need in order to execute. Each time it finds

one which is not in memory it will check the size of the absent
segment, and attempt to find an available slot in memory into

which it can fit that segment. If no such place exists, the

memory manager will begin a trip through memory aimed at making

such space available. The mechanics of this trip are not important
here (although they are worth knowing). What is of import is the
things which extend the length of time this trip takes, specifically:

1. Segment size. If the segment which the system is trying to bring
in is larger than the segments which are currently in
memory, it will take longer to find space and, in all
probability, will result in multiple processes losing segments
(meaning more memory manager overhead later).

2. Memory size. The less memory, the longer it will take the
memory manager {on a busy system) to come up with an available
chunk of memory. Also the less memory, the more likely it is
that that chunk of "available" memory actually belonged to
someone who will need it again shortly.

The best answer, of course, is to avoid the memory manager
altogether. This is not an easy trick, but you can enhance your
chances to avoid being swapped out by observing the old
recommendations that suggest:

1. Stay in a segment for as long as possible. When you leave, stay
out for as long as possible.

2. Share code where possible {the argument being that the more
processes sharing a piece of code, the more likely it is to be
referenced and, therefore, maintained in memory).

IX. Tl(q)

The time spent waiting around for locks and latches can be
significant, and the avoidance of this delay is often much easier
than one would think. First let me point out that you should NEVER
ignore a lock unless you are certain of the consequences. Given
that caveat, let me go on to recommend the following:

1. Don’t use locks unless you need them. Don’t, for example,
lock around reads unless there are data integrity problems
caused by concurrent writes.

2. Don’t hold locks of any kind longer than absolutely necessary.
Batch jobs which hold locks required by interactive processes
will cause all kinds of havoc.

Paper 3060 9 WASHINGTON, D. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 89S

3. Be aware of the fact that many operations cause serialization
on lock or latches over which you have no control (other than
to avoid whatever the operation was that drove you to hold
that lock or latch). Examples include purging items in the
system directory (requires a system lock, called a System Internal
Resource), data base accesses (serialize around the Data Base
Controll Block), and some sub system lookups (which lock, but
don't tell you).

X. Tovl

There is one parameter in the response time equation which is
subtracted out rather than added in: overlap time. Anytime that
you can overlap I/0 operations with other times, by utilizing
NOWAIT 1/0, you are reducing your overall response time (assuming
that you take the care to implement this efficiently). I advise
caution in doing this; time should be spent studying the proper
use of NOWAIT I/0 and the trouble which you can get yourself

into if it is mishandled. Used properly, however, it is an
effective weapon in reducing response time.

XI. Summary

The purpose of this paper has been to introduce the idea of response
time as an application and environment dependent cocept, whose
definition must take place within bounds imposed by the end user.
Further, I have attempted here to provide a description of

response time in terms of the components.

It would take a book to fully describe the mechanisms which go
into determining the queueing delays and service times encountered
by any process at each of the components delineated. I would
encourage those who are serious about optimizing response time on
their system to consider carefully the paradigm provided here, and
to then expand their understanding of the various components through
such vehicles as courses (particularly on MPE system internals),
manuals (especially the MPE System Tables manual), papers and
articles, and books. I will be more than happy to correspond

with those interested in pursuing this subject in greater depth
(since we have only scratched the surface here).

Paper 3060 10 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 89

3061. AUDITABILITY
or
WHAT’S A NICE BYTE LIKE YOU DOING IN A BASE LIKE THIS

Robert A. Karlin
7628 Van Noord Ave.
N. Bollywood, California 91605

Friday. 3:U4Spm. The sun shines through your office window
filled with the promise of a grand and glorious weekend.
Tomorrow’s picnic vies with the tickets to Sunday’s game in their
efforts to banish the code in front of you from your mind. As
the idea of packing it in early begins to slowly insinuate itself
into your consciousness, you hear an embarrassed cough, followed
by a knock on your door.

"Sir?".
"Yes?".
"There seems to be a slight problem with GL.",
"Yes?",

"Well, the weekly doesn’t balance to figures that
accounting gave us.”.

"How much are we out?”,
"About fifteen dollars and some small change.”.

You breathe a sigh of relief. Visions of thunderclouds
recede from your imagination. Glancing at the c¢lock, you muse
that at least you will have something to keep you busy until it
is time to check out.

9:30pm. You know, it wouldn’t have been this bad if the
operator had warned the users that you were taking the system
down at four to research the problem. As it was, the system was
in the middle of a chained delete, and you think that the
pointers are totally gone. Well, this is what they pay you for.

L R

11:30pm. The dump of the data base should be about
finished. You never realized that 400 lines per minute was so
slow. You contemplate making a fourth pot of coffee, and then
turn back to the list of daily transactions, checking them off,
one by one from last weeks Open Item to this weeks Open Item.

Paper 3061 1
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

3:15am. The numbers in front of you blur as you attempt to
reconcile the figures in front of you with what you know should
be on last weeks backup. Both errors that you have found so far
have increased the total figure that you are out by about three
thousand dollars. The couch in the hall begins to look very
good. They really don’t pay you that well, do they?

Saturday 2:30pm. The tape drives have got to go. Really,
is it too much to expect that out of three backups, one would be
good? Somebody should have noticed last week that the tape that
was restored was missing the last part of the account file.

" % n

Saturday U4:30pm. The operators have got to go. It wouldn’t
have been as bad as all that, but you’ve been running for five
hours using the wrong input tapes. Can’t those guys tell a 1
from a 77

Sunday 5:00pm. The game didn’t sound too interesting on the
radio, maybe it’s best you missed it. The data base is finally
correct (thanks to some fiddling with DISKED2) and all you want
to do is go home and relax. You finish your instructions to the
operator to back up the system tonight when he gets in and leave
for home.

Monday 1:00am. Rrring...Rrring...Click "Hello? Sir? We're
getting WCS parity errors and the CE thinks we’ve bombed our data
pack. Which file should we reload from?".

* ® »

The above represents the classic Data Processing nightmare.
Anyone who has been in the field of Data Processing for more than
a few years has seen similar occurrences. Our hardware is not
perfect, and our software will have bugs. No large system will
be completely free of them. Our task as DP professionals is to
minimize the effect of bugs and crashes. This includes having
our hardware PMed regularly, buying good tapes and certifying
them after they have been used for a while, adequately testing
our programs before implementation, and insuring that the system
is auditable. The last of these is the scope of this paper.

Paper 3061 2

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

AUDITABILITY

Auditability. From the word AUDIT, from the latin ‘audire’
meaning 'to hear’. In order for you to ’hear’ your system, it
must say something. In order for the things your system says to
be useful to you, you must 1listen to it. Auditability is
comprised .of these two halves. The first half consists of the
techniques of coding and design that we will discuss in this
paper. The second half consists of the departmental procedures
(including adequate staffing of a production control department,
user and operator training, etc) to balance and check the output
of the first half. Without the second half, the first is
worthless. One particular system that I am aware of was doomed
to failure because the weekly reports sat on a clerk’s desk for
six weeks before an attempt was made to balance them. By that
time, the system was so out of balance that it was impossible to
trace the reasons.

There are three basic areas that we will cover in this
paper. The first of these is DATA INTEGRITY. How do you design
early warning signs to detect when your data has been corrupted.
The second is the AUDIT TRAIL. How do you find when and where
your data has become corrupt, in order to isolate the error and
prevent the problem from reoccurring. The third is PROBLEM
RESOLUTION. When you discover where the error is, how do you fix
it while still maintaining auditability.

Paper 3061 3

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8S

DATA INTEGRITY

Insuring Data Integrity can be difficult. Aside from your
massive crashes, you still must deal with program and data entry
errors. If your system is a mailing list for a mass mailing
house, dropped records are probably not one of the great
disasters of modern time. On the other hand, if you are a major
bank, dropped records can be the company’s death bell. Most of
the techniques we will discuss involve some overhead. The method
or methods that you choose must be comensurate with the risk-
involved to your company by the failure of your system. Some of
the techniques build on others that we discuss, but there is a
way of implementing each independently.

THE FLAG FILE

The first techniques we will discuss c¢oncern system failure.
Many data bases are large enough to preclude restoring the data
base in the event of system failure, if at all possible. One
very simple technique of assuring the integrity of your data base
is the Flag File. In its simplest form, it c¢onsists of an
unblocked file with one record for every possible terminal on
your system. FEach record is set to true if the user working on
that terminal is in the process of updating your data base. If,
after a system crash, you find that no records are set to true,
you can bring up your application with no worries. If you find
that one or more flag records are set to true, you can check with
the user on that terminal to find out what he has been doing.
Interrogating the data base with QUERY, INFORM, or an application
maintenance tool, should allow you to determine the actual state
of the transaction. All printout should then be kept to document
the state of the data base after the crash. Weeks later, it could
be extremely important to note that a particular problem did or
did not arise as the result of a system crash.

To establish your flag file, build a 1024 record unblocked
MPE file. The record length is not important, but the best
length is 256 or less. The index into this file is your Terminal
logical device number (LDEV). When you are about to add to or
update your data base (Image, Ksam, Flat file, etc) you issue a
write direct to the file setting the first word of your record to
true (or - 1). Then you must insure that the flag record has been
written to disk (by issuing an FCONTROL 2 to flush the buffer).
Now you are ready to do your updates. After your transaction is
complete, issue another write direct to your file, setting the
first word of your record to false (or 0). A program to print
out the LDEV of every record that has its first word set to true
is trivial.

THE SCRATCH FILE
Another technique is the Scratch File. The scratch file is

used to complete any outstanding transactions when the system is

Paper 3061 4 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

brought back up after a failure. The technique makes use of the
capabilities of MPE message files. When processing the data for
an update to a series of records in your data base, instead of
processing the updates at that time, they are written to a
message file and then read back into the program and processed.
If the system crashes during the update, the unfinished portion
of the update is still stored safely on disk.

The scratch file is a permanent file whose record length is
equal to the largest update record of the system, whose filesize
is greater than the largest number of separate records in any one
update, and whose name contains your terminal id, or some other
unique identification. After the updates have been completely
written to the message file, we write a ’bracket’ record that
will be identifiable as the last record in the file and tell MPE
to update the end of file pointer (by issuing an FCONTROL 6
(write eof)). If we are using a flag file we now set the
critical flag, and the message file is now read and processed.
Before each read, we tell MPE that we wish to read the current
record from the message file without destroying it (by issuing an
FCONTROL 47). We then process the update. Then we issue another
read, this time without preceding it with the FCONTROL. This
will ’pop’ it off the message file. We continue until we have
reached the last record of the file. If the system fails during
the process, the update can be finished when the system is
brought back up. During the system design, you must decide
whether a program should be written to finish applying the
update, or the application should finish applying the update on
initialization. Since the records are processed before being
destroyed, the only problem to be coded for is duplication of the
record that was being processed at the time of the failure.

RECORD COUNTS

The most important rule of auditability is: Count
Everything. All transactions that affect the data base should be
tallied somewhere. The easiest early warning sign to recognize
is record counts that do not match. The number of records in
yesterday’s data base plus the number of records added today,
minus the number of records deleted today must equal the number
of records in today's data base. If not, we have a problem.
Count everything. In fact, all transactions should be counted
twice. We will discuss this point in greater depth when we
discuss audit trails. For now, we need a place to store all of
these counts we are generating. The best place to store them is
in our flag record. Because of the way HP treats unblocked
files, we already have 255 spare bytes per flag record that HP
will reserve for us whether we use them or not. So we may as
well store our counts here. Every transaction type should have
its own counter. Every record that is written or read should
also have its own counter.

Paper 3061 5

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

There are many side benefits to this scheme. Primarily, you
can use this to determine if you have too many terminals attached
to your system. If you discover that certain terminals are used
maybe once a month, you can certainly ask your user to justify
the expense of tying up those terminals. You can also see at a
glance what transactions are being heavily used, and which ones
are lightly used. When response time problems arise, this
information can be used to determine which modules should be
looked at in your drive for more efficient use of resources.
Even if you do not code the software to interpret the counts,
design your system to write them out. It is usually three to
five lines of code per program to add these routines. This is
miniscule when coding the original program, but is a tremendous
task to retrofit counts into a system of seventy or eighty
separate modules.

THE HASH TOTAL

Another technique that can be widely used is the hash total.
The hash total is so called because, like corn beef hash, it
doesn’t matter what goes into it, and what comes out looks
nothing like what went in. The hash total is a simple way of
verifying that what went into one’s data base is what is still
there. The hash total involves either taking the whole record,
or just the more important fields, redefining them as an integer,
then adding them all up into a hash total. If you hash every add
or update to your data base, and keep track of the result, you
can verify the total by reading your base sequentially and
checking the tally against your total. This technique is very
useful for spotting unauthorized updates to the data base {such
as with QUERY). The best place to keep your hash total is in the
data base itself, in a data set that has been created for that
purpose. This will certify that the hash totals that are to
match this particular data base are stored with it. Every
program that sequentially reads a file or set that has a hash
total associated with it should hash the file and print the
result. This can be easily checked against the data base to
verify the integrity of that file.

Paper 3061 6 WASHINGTON, D. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

THE AUDIT TRAIL

When 1 first entered Data Processing, 1 heard the term Audit
Trail and thought of a dusty dirt pathway through the California
scrub brush, where herds of cattle were driven to market. As I
became aware of what an audit trail was, and had to live with
interpreting them, 1 realized that my first impression had not
been far from wrong. An audit trail has many of the same
characteristics of a cattle trail. It should be easy to follow,
and not twist and turn at every step. It should be plainly
marked, and should not intersect other trails, or fork into two
undifferentiable roads. And it should have clearly marked
termini.

There are many ways of marking an audit trail. You can set
signposts, and you can set toll gates. You can set guards to
allow only those with the correct passwords to pass. You can
even create detailed maps of the terrain. But you must at least
have some way of knowing all who have passed.

The entire purpose for an audit trail is to provide a means
for verifying the source of all data in your data base. Your
audit trail must provide you with an easy means for tracking down
any datum that you may consider spurious to determine how it got
into your data base. It must also provide a means for verifying
the exact sequence in which events happened.

THE AUDIT LISTING

The most important consideration in designing your audit
trail is that absolutely every change to your data base must be
recorded at the detail level. Image logging is an alternative to
writing your ouwn log file, but, if you elect to use it, you must
urite a transaction formatting program to interpret it. You must
also include additional information, using either DBMEMO or
including extra fields on your update list, since Image only logs
the record number for deletes, and the affected fields for
update. In researching a problem recently using an image 1log
tape, it was disconcerting to try and trace a series of
transactions that consisted of only a bunch of records,
somewhere, that had a field called DELETE-FLAG updated to a ’Y’.

If you elect to use your own audit trail, you must be
consistant. First, and foremost, you must disable QUERY and any
other program that does not write to your audit file from
updating your data base. Second, no application fix can be
allowed to be written that does not write to the audit trail.
Third, and this applies if you use image logging as well, your
audit trail must be able to be printed in at least two sequences;
that is, in absolute time order, as the transactions happened,
and in the sequence of either your detail trial balance, detail
open item report, or other detail data base listing. And, of the
two, the second sequence is the most important, since the first
can be simulated by dumping the transactions in hex format to the

P 061
aper 3 7 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

printer. This report should also contain the same totals as the
report it will be checked against. If your bottom lines do not
balance, it should be a relatively easy task to add your audit
report to your last open item, at the group level, to pinpoint
the source of your out of balance condition.

SECURITY LOG

The security log actually has less to do with security than
with auditability. The security log consists of sequential time
stamped records created when a program or transaction starts or
ends. The best way of implementing the log is through a separate
subprogram, compiled into an account SL, that is called by every
program that accesses the data base. The parameters passed vary
with the application, but should at least include the program
name and an action code. Large menu driven applications can
write records to the security log at every menu step, or at the
entry to a particular function. The log should be detailed
enough to identify what transactions were accessing the data base
at any particular time. The log can be used to track down
problems that occur due to improper locking strategies or other
timing problems. It also records the fact that a particular user
actually did enter a particular program at a particular time.

PROGRAM VERSION CONTROL

One particularly nasty problem in tracking down problems is
verifying the particular version of the program in production.
This can be especially acute when the problem occurred weeks in
the past. There are two ¢techniques for establishing version
control over your programs. . First, you can store the date of the
last modification and a version number within your program. This
information should be printed in the heading of all reports, and
can be stored in the security log and audit file during program
initialization. This technique involves strict programming
standards, and must be followed for every program change, however
minor. Second, you can write a subroutine to open the program
file itself, and return the c¢reation date of the file. This
should also be printed in your report headings and stored in the
security log, and audit file. If you use this technique, be
certain that all MPE restores done for your system use the
OLDDATE parameter to prevent the destruction of the creation date
of the file.

RECORD COUNTS

We have seen previously that record counts can be a superb
tool for detecting data integrity problems. Record c¢ounts are
also very necessary for a complete audit trail. Every program
that alters the data base in any way should store the number of
records affected in two separate places. First, we should store

Paper 3061 8

WASHINGTON, O. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

our counts in our flag record or in another cumulative place.
This is an overall view of what this particular user or terminal
is responsible for. Second, every program should log its record
counts at termination to either the audit file in special count
records, another sequential file, or the security log in the
logoff record. Every batch program should, as well, count all
input and output transactions. Counting records should become so
completely ingrained in the mind of a programmer that he could
not conceive of an input or output routine without adding to a
counter. These counts can be invaluble in determining where
things may have gone out of kilter and, more important, where
they didn’t go out of kilter, by verifying the proper sequence of
steps, and certifying the correctness of the input data.

THE RACN NUMBER

RACN is an acronym for Run Activity Control Number. The
purpose of the RACN number is to identify a particular version of
a data base. The RACN is an integer that is incremented every
time the data base is opened for update and every time it is
closed after being opened for update. Its primary purpose is to
identify the exact version of the data base used for a particular
report, or as input to a particular batch update. The RACN
should never be odd when the data base is closed. The RACN
should be printed on every batch report and batch update. It
should also be recorded at the end of the processing day either
when backups are started, or when the log file or transaction
file is closed, and entered both in a control log and on the tape
label. The RACN serves to sequence batch reports in time order,
allowing you to be certain that time dependent reports were run
in the appropriate sequence. The RACN can be recorded in the
security log to pinpoint the sequence of logons and logoffs
accurately, and serves as a unique identifier for a particular
session that can be used in your audit file or in the actual data
base record.

P
aper 3061 9 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

PROBLEM RESOLUTION

The scope of this paper is not to teach you how to recover
from an error in balancing or from a head crash. That would be
another paper in itself. The purpose of this section is to
present ideas on how to correct errors without destroying your
audit trail. In general, all corrections must follow the
techniques we have discussed so far. There is no excuse for
bending the rules because this is a programmer correction and not
a user transaction. If possible, the actual changes to your data
base should be made by a production support person, or, if the
shop is to small for that position, the manager of the Operations
department. The programmers, if they are involved at all, should
be on a strictly advisory nature.

QUERY ET AL

The most important rule while using QUERY or any other
generic data base manipulation program to correct your data base
is DON'T. QUERY is an easy method for correcting the out of
balance conditions without regard to the internal integrity of
your data base. More problems have been caused because of
improper use of QUERY to fix a data base than any one factor that
I have come across. MPE allows you to restrict QUERY access to a
data base to read only using DBUTIL. Enabling this feature will
save your shop from days of attempting to discover what went
wrong with a program, when the culprit was a fumble fingered
programmer in QUERY.

THE MAINTENANCE PROGRAM

"If I can’t use QUERY, what can I use”? The specs for any
project should include a program that reads, writes, and updates
your data base on a set by set basis. This program should verify
that all fields are logically correct as well as physically
correct (i.e. that if your invoice header says that there are ten
line items, there are ten line items). The program should also
update the audit file during these updates. There should also be
an option to create special journal type entries to your audit
file, to allow you to bring your audit file into balance if
necessary. These records should be easily identifiable on any
report as additional records not related to the main user
programs. The maintenance program probably should be the first
program that you write in your system, and should be maintained
carefully when the data base changes.

DOS AND DON’TS OF PROBLEM RESOLUTION

DON’T modify any record on your audit file. Always add an
offsetting entry if you need to make an adjustment.

DON’T add to or update your data base without adding an
entry to the audit file. If it is necessary that the numbers not

Paper 3061 10 WASHINGTON, D C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

be added to the bottom line of your audit file, add an offsetting
entry.

DON’T use QUERY, or any other update program that does not
add to your audit file, and does not check logical relationships.

DO record every step that you take, and file them in a
convenient place.

DO keep a listing of ’before’ and ’after’ with your problem
documentation.

DO keep a log of production problems, and their solutions,
filed by problem type, to allow quicker problem resolution.

DON’T let programmers modify your production files. If they
are the only ones who know how, have them write a procedure for
Operations personnel to follow. ,

IN CONCLUSION

FRIDAY. 3:45pm. The sun shines through your office window.
This weekend you are going to leave on time if it kills you. It
has taken all week to recreate the work you had done over the
weekend. It probably would have been easier, but the user had
thrown away all of his past week’s reports, and you had to
compare the current open item with the data base on a line by
line basis, and there were 450,000 lines. Well, it’s over now,
and the weekend looms ahead. But as you take your feet from the
desk and push your listings into a neat pile, you hear a knock on
the door...

Paper 3061 11
WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8 S5

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

George B. Scott
Eldec Corporation
16700 13th Ave. W.

Lynnwood, WA 98046-0100
206-TL43-8227

One might ask "Why use process handling?”. Our reasons were (1) to
eliminate the need for user knowledge of MPE syntax, (2) to facilitate
management of a number of user terminals in a multi-CPU environment
and (3) to optimize performance by sharing certain overhead and
resources.

This paper presents the requirements (Section II) which led to the
selection of process handling as an alternative, the
environment/configuration (Section III) of the system, the process
tree and function of each process type (Section IV), a detailed
description of each process (Section V), special performance
considerations/observations (Section Vi), and summary comments
(Section VII).

Early in the use of this system, the performance, ease of system
management, and user friendliness were appreciated as major
accomplishments and of significant value to the corporation. As time
has progessed, another aspect has become apparent as perhaps even more
valuable: the ability to use a single system design to control an
application system regardless of the growth of the system. The design
presented herein is effective whether used on a single application, a
set of integrated applications, or all corporate applications. The
initial investment in design has saved the corporation tens of
thousands of dollars by preventing subsystem interfacing problems and
hundreds of thousands of dollars because of performance/throughput
characteristics.

The use of a single, common mechanism to interface the user with the
application modules has expedited our ability to introduce new
applications. At this point our users are familiar with the system
since all applications use the same conventions and techniques. This
in turn minimizes training costs and promotes greater accuracy in the
information being input to the system.

So, 1if you are developing application systems and are interested in
any of the above results, venture forth to Section II.

Paper 3058 Page 01 WASHINGTON, D. C.

BAL TIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

1I. REQUIREMENTS

The decision to consider process handling as a technique to help us
achieve our goal 1is more understandable when one considers the
specific requirements and environment preceding our decision.
Approximately five years ago, the decision was made to convert a large
scale on-line manufacturing/accounting system to use HP3000 computers.
The requirements are summarized as follows:

No user MPE knowledge required.

Data would be divisionalized on multi-CPU’s.
Five second or less median response time.
Application scope, extensive and expandable.
On-line inquiry/update.

Audit/Security provisions.

Not menu driven.

Logical transaction recovery capability.
Data must use a DBMS (IMAGE/3000)

Terminals must be block mode.

OO M AU 2w Ny =

.

Of the aforementioned ten requirements, only the first four were
significant 1in our decision to use process handling. See Appendix 1
for additional information on the related requirements 5 through 10.
The first four are described as follows:

Paper 3058 Page 02 WASHINGTON. D C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

Requirement 1 -- No User MPE Knowledge Required

One objective was that users would not be required to learn any aspect
of MPE, e.g., how to sign on, build files, use sort, run programs,
know JCL or any other fun trivia that can only diminish your profit
sharing check. Users are trained on how to wused the application
commands (screens) associated with the functional requirements of
their job.

i
With this as a requirement, one could either have one process handling
all terminals (Would you bet your job that this would not produce a
bottleneck?) or one process associated with each terminal. We chose
the latter. Hereafter, the process associated with each terminal is
called the "On-Line"” process and the parent for all of these "On-Line”
processes 1is hereafter called the “Controller” process. Thus, with
this single requirement, process handling became a strong candidate
for the fundamental processing design.

Requirement 2 -- Multi-Divisional/Multi-CPU Data

Shortly prior to conversion, the corporation had divisionalized into
three manufacturing divisions with a central manufacturing support
organization and corporate accounting/personnel functions. A
corporate objective was to provide the capability for each division to
independently control their data processing function while using a
common set of software. The potential for each business unit
(division) to do its processing on an independent CPU was considered
desirable (mandatory by some).

A self-imposed requirement considered imperative by Data Processing
was that data would not be added, changed or deleted by a process on a
remote CPU. Using process handling, a mechanism was designed to
transfer a wuser from one CPU to a second, if necessary, without’ the
user having to understand network communications or any other aspect
of inter-CPU communications. This process, hereafter referred to as
the "Switching” process, requires that the user only needs to
understand the application and determine which division’s data is to
be reviewed or changed. The multi-CPU environment becomes totally
transparent to the user.

A second aspect of a multi-CPU environment was the desirability of
being able to process on any CPU even if access to a remote CPU was
unavailable. This leads one to consider what data, if any, should be
redundant in a distributed or multi-CPU environment. Once it was
decided to maintain copies of customer and vendor data on each CPU,
the problem of selecting a mechanism to maintain concurrancy on the
redundant copies had to be addressed. Our answer was to design a
process, hereafter referred to as the "Pickup" process, which would
pick up a copy of the original transaction from the originating remote
CPU and pass it to a process, hereafter called the "Background”

Paper 3058 Page 03 WASHINGTON, D. G.

——————=

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85
USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

process, for processing. The "Background" process has the total
capability of an "On-Line"” process, except no terminal is associated
with the process.

The parent process for "Switching”, "Pickup” and "Background"” is the
"Controller"”.

Requirement 3 -- Five Second Response Time

Of all the requirements, the requirement to have a median response
time of less than five seconds was the requirement of greatest
concern. Response time was defined as the elapsed time between the
user pressing the "ENTER" key and the next screen being displayed
(returned) to the user,

Previous experience had shown that actions such as creating processes,
opening/closing data bases and using mail for inter-process
communication were expensive 1in resource utilization and were time
consuming. Thus, our original design minimized these actions.

The next decision was to provide a mechanism by which control of the
terminal could be returned to the user for entry of the next command
while the previous command was being processed. To enable this
approach to work, one must do all editing prior to passing the data to
the "Background” process for updating. Background processing is also
only utilized when the wupdating portion of the processing is
significantly more extensive than the editing portion. Todate, only 38
of Q00 commands pass data to be processed in the background mode;
however, the CPU and wall time for these transactions account for 40%
of the total CPU and wall time.

Paper 3058 Page 0L WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

Requirement 4 -- Application Scope, Extensive & Expandable

As can be seen in Figure 1, which shows the current application scope,
the major business and accounting applications associated with a
manufacturing organization are included within the system. The data
for these functions are included within a set of integrated data
bases shown in Figure 2. No data is redundant among the application
areas. From the 1list of applications, it is readily apparent that
this is a mature system. However, it is still growing and the system
design provides for the expansion of current application areas as well
as integration with new applications!

Accounts Payable Purchasing

Accounts Receivable Provisioning

Air Traffic Association Receiving

Bill-of-Material Sales Analysis

Document Inventory Sales Order Management

Engineering Change Orders Security (DP)

Inventory Control Shipping

Marketing Shop Floor Dispatch

Material Requirements (MRP} Spares Pricing

Master Scheduling Standard Cost

Order Entry User Documentation (DP)

Payroll Work-in-Process

Personnel Work Order Release
Wirelists

Figure 1 - Scope: Applications & Subsystems

Paper 3058 Page 05 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

Each Division:
DBAP -~
DBAR -~
DBENG -~
DBENGX --
DBHIST -~
DBMKT -~
DBMRP --
DBOR --
DBPO --
DBKCP --
DBWIP --

Each CPU:
DBCPU ~-
DBCU -
DBDOC -~
DBEM --
DBSEC -~
DBTBL -~
DBVN --

Accounts Payable

Accounts Receivable

Part Data, Part Lists, Routings, Noteg, Documents
Engineering Change Orders, Equipment Data
Historical Order Data

Marketing Data

Material Requirements Planning

Sales Orders, Forecast Orders, Manufacturing Ordersg
Purchasing

DP Batch Processing Flags

Shop Orders, Work-in-Process, Work Centers, etc.

DP Configuration Constants
Customer Data

DP Documentation
Payroll/Personnel
Security for DP System
Application Tables

Vendor Data

Special Divisional Data:

DBATA --
DBPROV --
DBWIRE --

Air Traffic Assoc¢iation Data
Provisioning
Wire List Data

Figure 2 -- Scope: Major Data Bases

Paper 3058

Page 06 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

III. ENVIRONMENT/CONFIGURATION

The environment of the current system is shown in Figure 3. The three
CPU’s (A, B and C) are Series 48’s with 4 Mb of memory each with
approximately 50 terminals each. A division resides on each of these.
Sytem B also contains some corporate functions and central
manufacturing services. System D is an HP3000 Series 42 with 3Mb of
memory and approximately 20 terminals. It 1is allocated for
development, testing and special user functions.

All computers are linked using DS3000 X.25 through a Memotec¢ MPAC2500
switch. System C is connected to the switch using a 9600 baud
telephone line with systems A, B and D being hardwired. Systems A and
B are also hardwired using a 56Kb line. Twelve 7933 disc drives
(40UMb each) are distributed among the CPU’s. Each system uses a high
speed tape drive for backup. A mixture of printers, micro’s,
plotters and other peripherals are attached to the various CPU’s.

Paper 3058 Page 0T WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

I 2
| © o
| S E
| B
Ig 8
5 :
________ -
0O
________ (&)
|~
M|
ol &
Z | s
3! 3
-
I =
| 2
——————— 4
_______]
I |
| < .
e ®
| = I&J
| § o
| S O
| @ i

—— —— — — — o— — —

Paper 3058 Page 08 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

IV. THE PROCESS TREE (BAP)

From T7AM until 7PM, the process tree shown in Figure L is run on each
of the primary CPU’s (systems A,B and C). These business application
processors, which are collectively referred to as "BAP", handle the
on-line inquiry and updates for all the applications which are shown
in Figure 1. A detailed description of each process is in Section IV
of this paper. A brief summary of each process is as follows:

C-I Process: The BAP Command Interpreter accepts commands from a
terminal called the BAP Console. Commands are typically to start,
terminate or show the status of grandchildren processes. The process

classes are: "On-Line", "Background”, "Pickup” and "Switching"”. The
"Controller" process is started automatically by the BAP "C-I". All
other processes are created by the "Controller”. The "C-I"

communicates with the "Controller” via an extra data segment "COMSEG",
which is described in Appendix 2.

Controller Process: The "Controller" is created by the BAP "C-1"., It
reads an extra data segment, "COMSEG", to determine what if any
actions it is to perform. Typically, its functions are to create or
terminate son processes. It may also send messages to the BAP "C-I".

On-Line Process: The "On-Line” process is created by the
"Controller". It opens a terminal for use and posts a timed read
against it. If data is read, it calls the appropriate application

module after certain edits. When the transaction is completed, it logs
the transaction, checks and updates "COMSEG" and posts another timed
read. If no data is read, it checks "COMSEG" and then returns to a
timed terminal read. If the user has not entered any data after a
certain number of timeouts, the user is signed off. The process then
initializes to a signon state.

Background Process: The 'Background" process 1is c¢reated by the
“Controller”. It performs the same as the "On-Line" process except
that it reads an IPC file for log record numbers to be processed.

Pickup Process: The "Pickup” process is created by the "Controller”.
It checks a remote file to see if data is present. If so, it reads
the remote data, logs it to an input file for "Background” and posts
the record number to the IPC file which the "Background" process
reads.

Switching Process: The "Switching"” process 1is c¢reated by the
"Controller”. It posts a timed read on an IPC file. If data is read,
it modifies "COMSEG" and awakens the “Controller” which will create
the process. It also checks "COMSEG" to see if any special action

exists to be done such as terminating itself.

Paper 3058 Page 09 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

%

FIGURE 4 —— BAP PROCESS TREE

Paper 3058 Page 10 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

V. BAP PROCESSES

C-I Process

The function of the "C-I" is to accept commands from the BAP console.
The BAP console is merely the terminal on which the "C-I" process is
run. For each CPU, only one "C-I" process is run. It has the
capability to control all activity in the BAP process tree. The
principal functions of the "C-I" are to initialize files, startup
processes, report status information and provide a clean shutdown.
Auxiliary functions include sending messages to "On-Line" users and
establish a new user signon welcome message.

The "C-1" process, shown graphically in Figure 5, performs the
following specific functions:

Initializes logfiles.

Opens DS lines to remote CPU’s

Creates extra data segment "COMSEG"

Opens background IPC file.

Creates "Controller" process.

Initializes welcome message to be used on "On-Line"” signon.
Cycles on read terminal until exit. The following actions
are fully described in Appendix 3: create, terminate,

tell, welcome, status, kill, exit, pause.

-3 O\ W0 NP

Paper 3058 Page 11 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

BAP
CONSOLE
REMOTE CPU
BAP
c-l REMOTE CPU
EDS |
‘COMSEG’
CONTROLLER

FIGURE 5 —— BAP C-I

Paper 3058 Page 12 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USINRG PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

Controller Process

When activated by either its parent, the "C-1", or by one of its
children, the “Controller"”, shown in Figure 6, reads the extra data
segment "COMSEG". See Appendix 2 for a description of "COMSEG". Once
awakened, the "Controller” will perform all required actions indicated
in "COMSEG" and then suspend itself. Actions include the following:
create a process, kill a process, send a message to the BAP console,
and update "“COMSEG" appropriately.

Paper 3058 Page 13 WASHINGTON, D. G.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

~

~
~
N
>

BACKGROUND

Py .
o
FIGURE 6 — CONTROLLER PROCESS

7
7/
7
7

Paper 3058 Page 1k WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

On-Line Process

The "On-Line" process, as shown in Figure 7, is created by the
"Controller". It then performs as follows:

Initializes global data and data to be shared with called
application modules.
Initializes data base file count.
Initializes log record.
Opens diagnostic file for error messages, fatal error dump
information.
Opens message catalog.
Fetches global constants.
Sets read timeout.
Opens security database.
Opens user terminal in block mode.
10. Fetches formfile names. .
11. Opens logfiles (See Appendix L for log record layout)
12. Opens background IPC file.
13. Opens background IPC record available file.
14. Cycles on terminal read until "EXIT".
. If first pass, displays signon screen.
Checks "COMSEG" and performs appropriately.
. If "BYE", signs off user and displays signon screen.
If "EXIT", closes terminal and terminates process.
Validates command-id,
Checks user security.
If security fails, falls through to step 1k.o
Logs transaction starting.
Calls application module (PCAL)
. Logs transaction completing.
If partial update, terminates this process.
JIf major error, flags comseg to terminate all processes.
. If multi-CPU, posts to all CPU’s.
o. Posts timed read on user terminal.
15. If no data was read but timeout occurred, checks
timeout provisions. If necessary, signs off user and
returns to 1lh-a,
16. If user signed on to remote CPU, updates "COMSEG", activates
the controller and terminates this process.

\O 0= O\ 2w =

5!—'%""—4-0-"5'0} »0o 0 oe

Paper 3058 Page 15 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

LOGFILE END

LOGFILE START

BKQROUND REC AVAIL
BKGQROUND REC QUEUE

/

CONTROLLER
ON-LINE
USER TERMINAL

DATA
BASES

FIGURE 7 — ON-LINE PROCESS

EDS
'COMSEG’

FORM FILES

M8QG CATALOG
SECURITY DB

GLOBAL CONSTANTS

Paper 3058 Page 16 WASHINGTON. D €

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

Background Process

The "Background” process, as shown in Figure 8, is e¢reated by the
"Controller”. It then performs as follows:

1. Initializes global data and data to be shared with called
application modules.

2. Initializes data base file count.

3. Opens diagnostic file for error messages, fatal error dump
information.

4. Opens message catalog.

5. Fetches global constants.

6. Opens security database.

7. Opens logfiles (start & end]}.

8. Opens IPC file for log record number to be processed.

9. Opens IPC file for reusable log record numbers.

10. Cycles on timed read of IPC file of log records to be processed.
a. Checks "COMSEG" and performs appropriately.
b. Reads record to be processed from LOGFILEL.
c. Validates command-id.
d. Logs transaction starting.
e. Calls application module.
f. Logs transaction completing.
g. If partial update, terminates this process.
h. If major error, flags comseg to terminate all processes.
i. If multi-CPU, posts to all CPU’s.
j. Updates IPC file for reusable log record numbers.
k. Posts timed read on IPC file of log records to be

processed.

11. When terminate flag is set in "COMSEG", process terminates

itself.

Paper 3058 Page 17 WASHINGTON. D. €

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

LOGFILE START
LOGFILE END
DIAGNOSTIC RPT

BKGROUND REC AVAIL

CONTROLLER
BACKGROUND
DATA
BASES

EDS
'COMSEG’

MSG CATALOG
SECURITY DB

GLOBAL CONSTANTS

Paper 3058 Page 18

FIGURE 8 —— BACKGROUND PROCESS

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

Pickup Process

The function of the “Pickup” process is to read records posted to
files on remote systems and to pass the transactions to "Background”
to be processed. A "Pickup” process is ¢reated by the "Controller”
for each remote CPU. Another approach would be to have a single
proc¢ess service all remote pickup files. The "Pickup” process, shown
in Figure 9, performs as follows:

1. Initializes global data.
Opens diagnostic file for error messages, fatal error dump
information.
Opens message catalog.
Fetches global constants.
Opens security data base.
Opens logfiles.
Opens background IPC file.
Opens background IPC record available file.
Issues file equations for remote pickup files.
. Opens remote pickup files.
Cycles on checking "COMSEG".
a. Determines if any records exist to be picked up.
b. If records exist, does the following:
i. Reads record.
ii. Passes record to "Background”.
iii. Goes to 1l-a.
¢. Pauses global pause time.
d. Checks "COMSEG".
12. When terminate status in "COMSEG" is set, process
terminates itself.

N

O O~ WU B

o

Paper 13058 Page 19 WASHINGTON. 0. C

BALTIMORE WASHINGTON REGIONAL USERS GROUP

INTEREX8S

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

o AVAL |
. OUEUE |
EvE |
TCRPT |

BKG??UN? REC AVAIL

_faxanounD nec aueue
LOGFILE QU

R

CONTROLLER /
PICKUP

EDS |
‘COMSEG’

M8G CATALOG
SECURITY DB

Paper 3058 Page 20

REMOTE PICKUP FILES

FIGURE 9 — PICKUP PROCESS

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

Switching Process

The "Switching” process is created by the "Controller”. The function
of switching is to terminate a user’'s process on the current CPU and
initiate an "On-lLine" process on a different CPU. This is required
whenever a wuser is signing on to a division which is not on the
current CPU, The transfer routing is controlled by a directory so
that the wuser has no requirements other than specifying the
destination division. The "Switching” process, shown graphically in
Figure 10, performs the following specific functions:

Initializes global data.
Opens diagnostic file for error messages, fatal error data,
Opens message catalog.
Fetches global constants
Opens transfer request IPC file.
Cycles on timed read of transfer request file.
Checks "COMSEG" and perform appropriately.
Builds a "COMSEG" device entry record.
Pauses to let process which issued request terminate itself.
Puts device entry in "COMSEG"
Displays message to "C-I".
Activates "Controller” who will create the process.
g. Issues timed read on transfer request file.
7. When terminate flag is set in "COMSEG", process terminates
itself.

WUt Lo D

-

Lo TN P o BN o g)

To better understand the "Switching” process, Figure 11 contains a
step by step diagram which is described as follows:

Step 1 -- User signs on to division which is not on current CPU. The
"On-Line" process determines which CPU is the correct one
and posts a record in the switch data file.

Step 2 -- "On-Line” driver sets termination flag in "COMSEG".

Step 3 -« "On-Line" driver activates the "Controller”.

Step 4 -- "Controller” terminates "On-Line" process.

Step 8 --"Switching” process on remote CPU reads switch data file.

Step 6 --"Switching" process posts data to "COMSEG".

Step 7 --"Switching" process activates remote "Controller".

Step 8 -- Remote "Controller" creates issues a file equation for the
user terminal and creates an "On-Line" process.

Step 9 -- The remote "On-Line" process displays the next screen.

Paper 3058 Page 21 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

EDS CONTROLLER
'COMSEG’
GLOBAL CONSTANTS \
CATALOG
Mea SWITCHING
DIAGNOSTIC RPT

REMOTE SWITCH FILE

FIGURE 10 —— SWITCHING PROCESS

Paper 3058 Page 22 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8%

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

CPU TO

CPU FROM
®
® @

FIGURE 11 —— PROCESS SWITCHING (STEPS)

®
2R

Paper 3058 Page 23 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

V. PERFORMANCE CONSIDERATIONS

The first principle used in our design was to minimize the number of
entities the system (MPE) has to keep track of. For example, the use
of a process tree enables one session to handle many terminals. In
our environment, it is common for thirty-five “On-Line" processes to
be in the process tree at any one time. Thus, MPE has to only keep
track of one session, not 35.

Another entity 1is the use of DS lines for communication with the
remote CPU’s. By having a process tree, these lines are opened only
once and only one remote session is established per CPU.

The other side of this coin is that a bottleneck can be established.
The reply to this is that process handling provides for any number of
lines to be opened. In fact, it is possible to design load leveling
algorithms to select the currently unused entity. The point is that
the decision of how many copies of an entity are active is left to the
descretion of the system designer/manager.

The second priciple used was to minimize actions, e.g., opening files,
opening data bases, fetching certain data, etc. This provides a
significant improvement in system response.

The third principle was to provide a large library of callable
routines in segmented libraries (SL’s) so that the system would have
less code to manage and would use less memory for the application
code. This is not directly related to process handling, but if you’re
still reading at this point, you probably need all the help you can
get.

The fourth priciple was to return control of the terminal to the user
as soon as the transaction was assured of being able to complete. To
use this concept, all edits must be done prior to any update. From
this priciple, the concept of a background process was developed. To
be effective, the amount of work to be done after edits has to be
significantly large. For example, a transaction which only updates a
single record would not be considered for background processing,
whereas a transaction which causes fifty records to be updated would
be. In other words, the reduction in user wait time should be
significant since additional overhead is being incurred by submitting
a transaction for background processing.

Paper 3058 Page 24 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

The use of process handling to drive our application code has
fulfilled all of our requirements and surpassed our expectations in
being adaptable to growth. By possessing such a commonality in
approach, implementation of new applications has been expedited and
training minimized. The consistancy in approach has also improved the
accuracy of information entering the system.

The particular design presented in this paper is just one way of using
process handling to optimize system management and system throughput
based on a particular set of specific requirements. This design could
easily be modified to accomodate special situations or unigue load
requirements. Alternative designs could just as easily be developed.

The use of process handling allows the system designer to provide for
unique situations, which frequently only become apparent after
significant growth, without having to modify each program in the
system. Thus, for any installation which is developing a significant
amount of code, or is anticipating development over an extended time
period, I would recommend that careful consideration be given to the
use of process handling as a design approach.

Paper 3058 Page 25 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8 6

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

APPENDIX 1

REQUIREMENTS ASSOCIATED WITH THE SYSTEM

The system prior to conversion processed data inquiries, updates,
additions and deletions on-line. Although the system also processed a
significant nightly batch which did both reporting and updating, the
long range objective was to eliminate batch and do all updating
on-line. Thus the anticipated load was expected to increase
significantly during the day, even without increased business activity
or expanded applications.

Requirement 6 -- Audit/Security Provisions

Security was a requirement at the employee, division, and command
level. For example, an employee might be authorized to execute an
update command in his own divsion, review similiar data in a second
division and do neither in a third division. The security is
controlled by division/corporate controllers.

The audit requirements were that each logical transaction was to be
tagged with the wuser-id , time of transaction and terminal number.
Each record in the data base is timed stamped such that the last user
to change the data can be identified. Each logical transaction is
logged to a permanent file from which performance and usage statistics
are generated.

Requirement 7 <+ Not Menu Driven

Although on-line help and documentation were desired, it was
considered a critical requirement that a user could execute any
authorized command in any sequence without having to meander through a
series of menus or specific sequence of screens just to get to the
screen the user desired to |use. Considering that close to 900
commands exist today (backed by 1.2 million lines of source code and
over 2Mb of on-line executable code), this requirement played a major
role in the design of our process handling system. Note that a large
amount of application code had to be accessible from any "On-Line"
process with no observable access time difference between commands.
Access also had to be quick enough to also meet the minimum
transaction time requirement.

Paper 3058 Page 26 WASHINGTON. D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USIRG PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

APPENDIX 1 -- Continued

Requirement 8 -- Logical transaction recovery capability

In the previous system, each screen transmitted from the user’s
terminal contained a command-id and associated data. Each of these
transactions contained all the data necessary for processing; i.e.,

each transaction stands alone. In the event of the necessity of
having to run recovery (Have you ever had a head crash?), the
transactions which completed successfully were reprocessed.

Obviously, much more could be said about backup, recovery approaches,
logging and related subjects, but this paper is about process
handling.

Requirement 9 -- Data Must Use a DBMS (IMAGE/3000)

The previous system was based upon an integrated set of linked files.
To facilitate system change, growth and user inquiry using fourth
generation tools, all data is contained within IMAGE/3000 data bases.

Requirement 10 -- Terminals Must Be Block Mode

The previous system was based on a block mode terminal. V/3000 was
selected for all screen handling but no editing. Why not?

Paper 3058 Page 27 WASHINGTON, D. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

APPENDIX 2

COMSEG

COMSEG, an extra data segment, is a means by which the BAP processes
on one CPU can share data. It consists of a header, a device table, a
message table, and the WELCOME message.

header
device entry #0 }
device entry #1)
. }
. } device table
- } {one entry for each
} UT020P son process)
device entry #n)
message entry #0)
. }
. } message table
. }
}
message entry #9 }
WELCOME message
Header Format
Word # Data Type Contents
0 -1 double log record number
2 - 3 double log file size
4
5 integer address of device table
6 integer device entry size (words)
7 integer device table size (entries)
8 integer address of message table
9 integer message entry size (words)
10 integer message table size (entries) maximum = 10
11 integer address of WELCOME messages

Paper 3058 Page 28 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S5

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

APPENDIX 2 -- Continued

Device Entry Format

Word # Data Type Contents

0 integer logical device number of forms terminal
(0 if this entry is empty)

1 logical true if DEBUG to be used, otherwise false
2 - L4 ASCII current user ID (blank if no one signed on)
5 - 6 ASCII current ORG-1D

7 -9 ASCII current transaction

10(1:15)integer current user process status {UPSTATUS)

0 - create pending interpreter
1 - created, active pending
2 - active

3 - terminate pending
4 - terminated

5 - disable pending
6 - disabled

7 - enable pending

8 - enabled

9 - abort pending

10 ~ aborted

11 - transferred (to another CPU)
13 - kill pending

10.(0:1) on if message not yet sent to operator
indicating change of status
11 integer PIN for this process
12 - 21 integer message indices (-1 for none)
22 logical origin (0 -~ command interpreter
>0 - another process structure}
23 - 26 AscCII terminal’s home CPU-ID
27 - 30 ASCII name of CPU this terminal is transferring to
31 - 36 ASCII user ID and password (transfer signon info)
37 - 38 ASCII ORG-ID (transfer signon info)

Message Entry Format

Word # Data Type Contents
o integer usage (# users yet to receive this message)

1 - 39 ASCII message

Paper 3058 Page 29 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

APPENDIX 2 -- Continued

Welcome Message Format

Word # Data Type Contents
0 - 38 ASCII line O of welcome message

. . line 19 of welcome message

Paper 3058 Page 30 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

APPENDIX 3

C-I COMMANDS

Puts a device entry into "COMSEG" and activates the "Controller”. The
“Debug” option causes the process to be created with Debug.

TERMINATE {1list} [;CPU’ID]
{ALL }

Sets the status flag in each device entry in the list and activates
the "Controller”. The "ALL" option sets the flag in all device
entries. The "CPU’ID" option sets the flag in the device on the
specified CPU. Note that in multiple CPU environments, more than one
device entry could have the same logical device number; thus, for
remote devices, the CPU’ID is also given.

KILL {1list} [;CPU’ID]
{ALL }

Sets the status flag in specified device(s) to kill pending and
activiates the "Controller"”.

EXIT

Terminates the "C-I" which causes all descendent process to be
terminated.

STATUS {list} [;CPU’ID]
{aALL }

Read each device entry in "COMSEG" and prints a line of information on
the BAP console. Also shows the remaining number of background
transactions.

Paper 3058 Page 31 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE

APPENDIX 3 -- Continued

PAUSE {number’of ’minutes}

Calls the PAUSE intrinsic for the specified number of minutes. Used
in conjunction of running a process in DEBUG.

TELL {1ist)} [;CPU’ID]
{ALL }

Send a message to the device(s) in the list. Requests up to ten lines
of messages from the BAP console wuser. Puts this message in the
message table of "COMSEG". Each "On-Line"” process checks after each
transaction or time-out to see it messages exist. If so, it displays
the message to the "On-Line" user terminal.

WELCOME

Updates the welcome message in "COMSEG” from a standard file. This
message is displayed on the "SIGNON" screen.

Paper 3058 Page 32 WASHINGTON. D. €

B8ALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8%

USING PROCESS HANDLING TO OPTIMIZE SYSTEM PERFORMANCE
APPENDIX 4

LOGFILE FORMAT

SSE=S=S==-====Z===

Character Data Type Description

0-1 ASCII Year
2-3 ASCI1 Month
4-5 ASCII Day
6-T ASCII Hour
8-9 ASCII Minute
10-11 ASCII Second
12 ASCII Forms terminal CPU)
13-15 ASCII Forms terminal ldev# }orgntr
16-20 ASCII User-id
21-25 ASCII CPU time for this transaction
(tenths of a second)
26-31 ASCII Wall time for this transaction
(tenths of a second)
32-35 Double Lock stamp
(milliseconds}
36-37 ASCII Recovery code
QLIS BT N e, T, L
38-41 ASCII ORG-1D
42-43 ASCII Error code (UXECODE
value or U if edit
error detected)
44-45 Integer Transaction length
(bytes)
46-51 ASCII Current form name
(prior to calling application)
52 - This CPU-ID
53 ASCII | "B"=executed in
background,
space = normal
Sh-57 ASCII Originating org
(indicates redundant
request if not blank)
58-59 - Unused
60-65 ASCII Transaction command-id
(1st 6 char of transaction])
66-1987 ASCII Transaction data
(Variable length)
1988-2047 -- Unused

Paper 3058 Page 33 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

3055. Everything You Wanted to Know about Interfacing
to the HP-3000
The Latest Inside Story

Ross Scroggs
Telamon, Inc.
1615 Broadway, 11lth Floor
Oakland, CA 9L612
(415) 835-5603

INTRODUCTION

The subject of terminal interfacing to the HP-3000 contains
no facts. None. Everything I say and you observe is an illusion
supported by a lack of information and the general perversity of
the universe. Maybe terminal interfacing is the fourth
dimension, moving through it is certainly stranger than anything
you have ever experienced before. But the universe is becoming
stable, and the strangeness is beginning to abate, or I've
finally become immune to change.

I have included a 1list of references at the end of this
paper from which I have obtained some of the information included
here. If you desire to make all of your terminal attachments
successful, obtain all of the references and read them. The most
important piece of information I can give you is to start
rlanning early when attaching terminals to the HP-3000 and don’t
believe anything you read, including this paper. If you haven’t
seen it work yourself, plan on having to solve a few problems.
This paper, derived from eleven years of HP-3000 experience, is a
guide to solving those problems, but it won’t solve them for you.

Asynchronous terminals are attached to the HP-3000 Series I,
I, and III through the Asynchronous Terminal Controller (ATC);
to the Series 30/33/39 and L4O/42/LL/U8 through the Asynchronous
Data Communications Controller (ADCC); and to the Series L2/4L/L8
(optional), Series 37 and 6L/68 through the Advanced Terminal
Processor (ATP). This paper addresses issues involved in making
a successful connection to one of these three devices.

The experiments in this paper were conducted on a Series III
with ATCs, a Series 42 with ADCCs running T Delta 1, and a Series
37 with ATPs running T Delta 1. You should expect that your
results will differ when using different machines and operating
system releases.

RS-232 and RS-422 are standards which describe an interface
specification. They describe the electrical characteristics and
control signalling conventions used by devices conforming to the
standard. They do not guarantee that two RS-232 devices can
communicate with each other. It is the user’s responsibility to
ensure compatibility of devices at the data level. The principal

Paper 30 1
per 3055 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

focus of this paper is the description on the factors that the
user must control.

Terminals attached to the HP-3000 are accessed in two ways:
as a session device or as a programmatically controlled device.
A session device is one on which a user logs on with the HELLO or
() commands and accesses the HP-3000 through MPE commands. A
programmatic device is one which is ¢ontrolled by an application
program that is run independently from the device. These two
access methods are not mutually exclusive; a session device can
be accessed programmatically and many MPE commands can be
executed on behalf of a user who is accessing the system
programmatically.

SESSION DEVICES

Attaching a terminal as a session device is typically the
easier of the two methods. You must set the terminal speed,
parity, subtype, and termtype correctly and provide the proper
cable to complete the hookup.

Terminal Speed

The speeds supported by the ATC are: 1106, 150, 300, 600,
1200, and 2400 baud. The speeds supported by the ADCC are those
of the ATC plus U800, 7200, and 9600 baud. The ATP additionally
supports 19200 baud, but deletes 150 baud. Ports are either
speed sensing or speed specified. Speed sensing ports
automatically adjust the baud rate based upon <the initial
carriage return received. Speed specified ports require that the
initial carriage return be received at the specified speed.
Speed specified is in a state of limbo on ADCCs. HP is trying to
eliminate it, as it is no longer required, but bugs in the speed
sensing algorithm have kept it around. The ATP does not support
speed specified ports; but this presents no problem as speed
sensing works at all speeds.

Terminal Parity

The format of characters processed by the HP-3000 is: a
gingle start bit, seven data bits, a parity bit, and one stop bit
(two at 110 baud). The parity bit is: always zero (called space
parity), always one (called mark parity), computed for odd
parity, or computed for even parity. A character with eight data
bits must have no parity bit to be compatible with the HP-3000.
In this case, the eighth data bit must be set to a zero, as the
HP-3000 will try to interpret it as parity even though the
terminal considers it data.

Paper 3055 2 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

Choosing the proper parity setting has been complicated by
differences between the ATC and ADCC/ATP. The ATC inspects the
parity bit of the initial carriage return received from the
terminal and sets parity based on that bit. If the bit is a
zero, the ATC generates odd parity on output. If it is a one,
the ATC generates even parity on output. In either case the
parity of incoming data is ignored and the parity bit is always
set to zero before the data is passed to the data buffer. The
ADCC and ATP also set parity based on the parity bit of the
initial carriage return, but they do so with a slight, nasty
twist. If the bit is a zero, the ADCC/ATP pass-through the
parity bit supplied by the application program on output. If the
initial parity bit is a one, the ADCC/ATP generate even parity on
output. If pass-through parity was selected, the parity bit of
the incoming data is passed through to the data buffer. If even
parity was selected, the input data is checked for proper even
parity and the parity bit is set to zero before the data is
passed to the buffer. Thus, you can not use odd or mark parity
on the ADCC/ATP. The odd parity will be interpreted as
pass-through and the parity bits will wind up in your data
buffer, wreaking havoc. Mark parity will be interpreted as even
and all input will cause parity errors.

Subtype

Subtype specifies the type of connection between the terminal
and the HP-3000. The principal choices are: direct connect, full
duplex modem connect, and half duplex modem connect. The subtype
also specifies if a terminal is to be speed sensed, or speed
specified. The ATC supports subtypes O through 7, the ADCC
supports subtypes 0 through 5; the ATP supports subtypes 0 and 1.
Subtype 0 is used for directly connected terminals, no modem is
used. Note that terminals that are attached to multiplexors can
fit in this category, the modem involved is managed by the
multiplexor, not the HP-3000. Subtype 1 is used for terminals
connected through full duplex modems such as Bell 103, 212 and
Vadic 3Uxx. Subtype 2 and 3 are used for terminals connected
through half duplex modems such as the Bell 202S. Subtypes 0
through 3 speed sense on the initial carriage return. Subtypes 4
through 7 correspond to O through 3 with the difference that
terminals using these subtypes will not be speed sensed; they
will run at a specified speed that is set at configuration time.
This subtype is often used to prevent the HP-3000 from trying to
speed sense garbage which sometimes occurs when using short-haul
modems (line-drivers) that do not have a terminal attached to the
other end. The ATC can lock out ports when this problem occurs.

Termtype
Termtype specifies the characteristics of the terminal to be

attached to the HP-3000. Most termtypes were derived from
specific models of terminals that were attached to the HP in the

p 0
aper 3055 3 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

old days, early 1970°s. HP is changing this term to port
protocol type. The ATC supports termtypes: 0-6, 9-13, 15, 16,
18, 19, and 31. The ADCC supports termtypes: 4, 6, 9, 10, 12,
13, 15, 16, 18 and 19/20/21/22. The ATP supports termtypes: 6,
9, 10, 12, 13, 15, 16, 18, and 19/20/21/22.

Termtype 4 is for Datapoint 3300 terminals, it outputs a DC3
at the end of each output line and responds to backspace with a
control-y. Termtype 4 on the ADCC does not output DC3s at the
end of each line.

Termtype 6 is the general non-HP hardcopy terminal type. It
outputs a DC3 at the end of each line but responds to a backspace
with a linefeed. The linefeed is on the first backspace of a
series, this allows you to type corrections under the incorrect
characters.

Termtype 9 is the general non-HP CRT terminal type. No DC3s
are output at the end of the line and nothing strange happens on
backspace, the cursor backs up just as you would expect. (The
ATC strips out some escape sequences from the input stream that
were generated by the CRT on which termtype 9 was patterned.)

Termtype 10 is the general HP CRT terminal type. It is
characterized by the ENQ/ACK flow control protocol.

Termtype 13 is typically for those terminals at a great
distance from the HP-3000 for which some local intelligence echos
characters and the 3000 should not. (Telenet and Tymnet charge
you for those echoed characters, that’s reason enough not to have
the HP-3000 echo them.)

Termtypes 15 and 16 are for HP-263x printers. Like termtype
10, the ENQ/ACK flow control protocol is used. When the HP-3000
sends the ENQ character and no ACK is received within a few
seconds, another ENQ is sent. This repeats until an ACK is
received. This mechanism ensures that no data is sent to a
non-responding printer. Non-HP printers that support an
answerback capability can make use of this feature. Configure
them to return an ACK when an ENQ is received and the problem of
output being sent to powered-off printers is eliminated.

Termtype 18 is just like termtype 13 except that no DCl is
issued on a terminal read.

Termtypes 19/20/21/22 are for spooled 2361B printers.

Certain termtypes less than 10 spe¢ify a delay after c¢arriage
control characters are output to the terminal. The ATC and ATP
handle this by delaying for a certain of character times but do
not output any characters. The ADCC actually outputs null
characters. The most extreme case is termtype 6 which causes 145
nulls to be output after a CR/LF at 240 cps.

Paper 3055 b WASHINGTON, D. €.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

There is a new product from HP (and a c¢ontributed program}
that allows ADCC/ATP users to construct custom terminal types.
The Workstation Configurator allows a terminal type to be
constructed that should match almost any specific terminal. The
configuration is stored in a "termtype" file and HP supplies the
default files. (Listf TT@.PUB.SYS to 1list them.)} There are
additional capabilities provided that have not been supported
previously. For example, multipie line terminators can be
defined to be equivalent to carriage return. A termtype could be
set up to specify tab as a line terminator which would enhance
the use of the ten-key pad on HP terminals for data entry
operators.

Cable

Directly connected terminals {subtypes O and 1) use only
three signals in the cable: pin 2 (Transmit Data), pin 3 (Receive
Data), and pin 7 (Signal Ground). Note that all signal names are
given from the point of view of the terminal, not the modem or
the HP-3000, which acts like a modem. Typically the cable will
connect: pin 2 at the terminal to pin 2 at the HP-3000, pin 3 at
the terminal to pin 3 at the HP-3000, and pin 7 at the terminal
to pin 7 at the HP-3000. This is not to say that your terminal
does not require other signals, it just says that the HP-3000 is
not going to provide them for you. If your terminal requires
signals like Data Set Ready, Data Carrier Detect, or Clear To
Send, you can usually supply these signals to the terminal with a
simple cable patch. Jumper pin Y4 (Request To Send) to pin 5
(Clear To Send). Jumper pin 20 (Data Terminal Ready) to pin 6
(Data Set Ready) and pin 8 (Data Carrier Detect). These two
Jumpers cause the terminal to supply its required signals to
itself.

Modem connected terminals (subtypes 1 and 5) use seven
signals ir the cable: pin 2 (Transmit Data}), pin 3 (Receive
Data), pin U (Request To Send), pin 6 (Data Set Ready), pin T
(Signal Ground), pin 8 (Data Carrier Detect), and pin 20 (Data
Terminal Ready). Naming the signals gets complicated since the
HP-3000 is acting like a modem and it is being attached to a
modem. Typically, the cable that connects the HP-3000 to the
modem will connect: pin 2 at the modem to pin 3 at the HP-3000,
pin 3 at the modem to pin 2 at the HP-3000, pin 4 at the modem to
pin 8 at the HP-3000, pin 6 at the modem to pin 20 at the
HP-3000, pin 7 at the modem to pin 7 at the HP-3000, pin 8 at at
the modem to pin 4 at the HP-3000, and pin 20 at the modem to pin
6 at the HP-3000.

You should note an important characteristic of the cable
descriptions given above. The terminal to HP cable is
"straight-through,” with like-numbered pins connected together.
The modem to HP cable is a 'cross-over,” with pairs of pins
cross-connected. Why the difference? The explanation is that
the world is divided into Data Terminal Equipment (DTE) and Data
Communication Equipment (DCE). A DTE is a terminal or something

Paper 3055 5

WASHINGTON, D. G,

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

like it which sits at the end of a data communication line. A
DCE is a modem or something like it which is part of the data
communication line. The distinction is not rigid as the HP-3000
acts like a DCE. A multiplexor may look like a DCE to the
terminals attached to it, and like a DTE to the modem to which it
is attached. The cabling principle is that a DITE to DCE
connection uses a straight through cable and a DTE to DTE or DCE
to DCE connection uses a cross over cable.

The cable that attaches your terminal to a modem should be
specified in your terminal owners manual, consult it for proper
connections.

Flow Control

Flow control is the mechanism by which the rate of data flow
between the HP-3000 and the terminal is controlled. The HP-3000
supports two output flow control methods, ENQ/ACK and XON/XOFF.
The HP supports one input flow control protocol, DC1/DC2/DC1,
commonly referred to as the "block mode" protocol.

The ENQ/ACK protocol is controlled by the HP-3000. After
every 80 characters output the system sends an ENQ to the
terminal and suspends further output until and ACK is received
back from the terminal. The suspension is of limited duration
for termtypes 10 to 12, output resumes if no ACK is received in a
short amount of time. The suspension is indefinite for termtypes
15 and 16, the ENQ is repeated every few seconds until an ACK is
received.

It is the ENQ/ACK protocol that fouls up non-HP terminals
attempting to access the HP-3000 through an ATC port configured
for an HP terminal. Most terminals do not respond to an ENQ with
an ACK, you must do it manually; type control-f which is the ACK.
An ENQ is output by the ATC upon receipt of the initial carriage
return from the terminal. You get hung immediately, unless you
type control-f and logon and specify the proper termtype in your
HELLO command. No ENQ is output by the ADCC and ATP upon receipt
of the initial carriage return from the terminal. Thus, you do
not get hung immediately. You must still specify the proper
termytype in your HELLO command to avoid getting hung on an ENQ
output later.

The XON/XOFF flow control protocol is controlled by the
terminal. When the terminal wishes to suspend output from the
HP-3000 it sends an XOFF (control-s or DC3) to the HP-3000 and
sends an XON (control-q or DCl) to resume output. Unfortunately
the HP-3000 sometimes fails to properly handle one of the two
characters and you either overflow your terminal or get hung up.
This is particularly nasty when your terminal is a receive-only
printer and you can’t supply a missing XON. You're really dead
if the HP-3000 misses the XOFF. XON/XOFF is not handled well by
the ADCC and ATP. Neither controller strips the parity bit of

Paper 3055 6

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

incoming characters when pass-through parity is in effect. Thus,
a terminal using any parity other than space will have all of its
XONs or XOFFs ignored; the character with the parity bit included
will not match the character used by the controller because its
parity bit is set to zero.

A special note on XON. If you inadvertently send an XON
(DC1) to the HP-3000 (ATC only) when output is not suspended, you
will be in paper tape mode and backspace, control-x, and linefeed
will act strangely. Hit a single control-y to get out of this
mode.

Some terminals perform flow control by raising and lowering a
signal on their interface, the HP-3000 can not handle this. You
must either run the terminal at a low enough speed to avoid
overflowing it or provide hardware to convert the high/low signal
to ENQ/ACK or XON/XOFF.

The form of flow control used by HP terminals when block mode
is enabled is the DC1/DC2/DCl protocol. When the enter key is
pressed on the terminal, a DC2 is sent to the HP-3000 after
receipt of a DCl to alert the HP-3000 of a pending block mode
transfer. When the HP-3000 is ready to receive the data it sends
a DC1 back to the terminal to start the data transfer. (Your
program does not handle the DC2/DCl, but see below FCONTROL 28,
29.)

This works fine except in certain circumstances. In certain
modes the terminal actually sends DC2 carriage return when the
enter key is pressed. This is no problem unless the DC2 and CR
do not arrive at the HP-3000 together. The CR may be seen as the
end of the data if it comes sufficiently far behind the DC2, your
program completes its request for data with nothing and the real
data bites the dust when it finally shows up. The separation of
the DC2 and CR can occur when using statistical multiplexors or
when using Telenet or Tymnet. Be aware, this problem is
infrequent, but unsettling when it occurs. The ADCC and ATP
attempt to solve this problem by deleting any carriage return
that follows a DC2, regardless of the distance between them.

Special Considerations

Every shop should have the proper tools to perform its tasks.
Don’t neglect your terminal needs. Keep on hand a small flat
blade screwdriver, a small Phillips head screwdriver, needlenose
pliers, and some sort of breakout box. A breakout box is a small
box which is placed inline between two devices. It allows you to
monitor, via LEDs, certain RS-232 leads. This tool lets you
visually verify the state of modem signals and data flow. It
allows recabling by providing a jumper area so that any pin to
pin combination desired is achievable. These boxes cost from $38
to $200.

Paper 3055 7

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

The RS-232 specification requires that terminals running at
high speed be no further than 50 feet apart. Almost everyone
ignores this specification and experiences no problems. ATP
users are beginning to have the rule enforced, the ATP seems more
sensitive to long RS-232 lines. Asynchronous line drivers (short
haul modems) can be used to drive terminals at greater distances.
The HP implementation of RS-L22 specifies a maximum separation of
4000 feet at high speeds. This improvement, as well as the fact
that the interface is almost immune to noise, will simplify
certain aspects of terminal interconnec¢tion in the future.
Unfortunately, the ¢two specifications are incompatible and
switching from RS-232 to RS-L22 is not trivial.

A multiplexor is a device that allows many terminals at a
remote location to be connected to the HP-3000 over a single
communication line. Each terminal is connected to a distinct
port on the HP-3000, but savings are realized because all
terminals share the same phone line. Multiplexors attempt to
maximize the shared use of the line, but in doing so have to use
flow control protocols if the aggregate data rate from the
terminals or computer exceeds that of the data communicaton line.
Multiplexors can be set up to use XON/XOFF flow control protocol
at either end. On the computer end this usually causes little
trouble. On the terminal end, though, problems abound. Neither
the user, typing in character mode, or the terminal, transmitting
in block mode, is 1likely to obey an XOFF. Many block mode
terminals sharing a line may overflow it if sufficient capacity
is not available.

The ENQ/ACK protocol does not perform well with some
multiplexors. The delay between the transmission of the ENQ from
the HP-3000 and the subsequent receipt of the ACK generated by
the terminal can cause the terminal to print in a start/stop
mode. Some multiplexors attempt to solve this problem by
emulating the ENQ/ACK protocol at each end. The multiplexor at
the HP-3000 end responds to ENQ with an ACK and passes the ENQ to
the remote multiplexor. The remote multiplexor passes the ENQ to
the terminal and waits for the ACK response. This feature allows
the transmission to proceed much more smoothly.

The value added networks, Tymnet and Telenet, also wuse
XON/XOFF and have the same problem with sending an XOFF to the
terminal as do multiplexors. The networks can be configured not
to use XON/XOFF, but you can still lose data. There is a new
termtype, 24, that is used for virtual terminal ports connected
through an INP. The INP, Tymnet/Telenet, and certain HP
terminals can work together to make block mode work effectively
without data loss.

A port selector is a device that allows many terminals to be
connected to not-so-many computer ports. Terminals are assigned
to ports on a first-come, first-served basis until all ports are
consumed. Subsequent terminal service requests are refused or
held until a port becomes available. Beyond this basic

P
aper 3055 8 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

operation, port selectors can implement priority schemes,
allocate terminals to ports on different computers, and perform
automatic disconnects. One question arises though. How does the
port selector know when a port on the HP-3000 is available? When
a terminal logs off a direct connect port, subtype O or 4, there
is no indication other than the logoff message that the port is
free. For ports controlled by port selectors, use of subtypes 1
or 5 causes a modem signal to drop on logoff. This can be useéd
by the port selector as an indiction that the port is free. Some
systems require that all terminals provide a terminal ready modem
signal. When the terminal is powered off, the signal is lowered
and the port to which the terminal was connected is considered
free. Other systems require that the user type a disconnect
sequence whenever they cease using a port.

There is one very large potential problem with port selectors
that must be dealt with carefully. Suppose there is a brief power
outage in the computer room; the HP-3000 powerfails and maintains
all sessions intact. The port selector will probably lose all
connections requiring that the users re-establish their
connections. However, there is no guarantee that each user will
get the same port, and since all sessions are still active,
everyone winds up in someone else’s session. (Something to think
about before your next security audit). You will have to
manually abort all sessions on the HP before allowing the users
to reconnect through the port selector.

PROGRAMMATIC DEVICES

Attaching a terminal as a programmatic¢ device is usually done
when you want to attach a serial printer, instrument, data
collection device, or other strange beast to the HP-3000. An
application program you write will typically control all access
to the device; a user will not walk up to it, hit return, and log
on. I will explain the various intrinsics that are used to
access programmatic devices.

In the following intrinsic deseriptions, differences between
ATC, ADCC and ATP machinces will be noted. However, it is
finally the case that the ADCC and ATP behave identically except
in the case of parity. The ATC is essentially frozen and does
differ significantly in some areas.

FOPEN

You must call FOPEN to galin access to the device. 1 always
use a formal file name to allow control of the open with file
equations. If the device is unique in the system, I use its
device name as the file name. The foptions specify CCTL,
undefined length records, ASCII, and a new file. The aoptions
specify nobuf, exclusive access and input/output. Choose a

Paper 3055 9

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

record size that is larger than the maximum data transfer that
will take place,

For devices that are to be used exclusively in programmatic
mode it is recommended that you REFUSE the device so that
extraneous carriage returns from the device will not be
interpreted as logon attempts by the HP-3000.

Opening subtype 1 or 5 ports differs among the controllers
regarding the point at which you hang if the controller finds
that the modem is not online. Programatically handling incoming
calls can be tricky; experiment carefully.

FCLOSE

You call FCLOSE to release access to the device. Though
FCLOSE resets most FCONTROL options, it is good practice to
explicitly reset all FCONTROL options before calling FCLOSE.

ATC - MPE sends a CR/LF to the device if it believes that the
“carriage” is not at the beginning of the line, i.e., the last
character output was not a linefeed.

ADCC/ATP - MPE never sends a CR/LF.

FREAD

You call FREAD to get data from the device. Many of the
FCONTROL calls shown below affect how FREAD works. End-of-file
is indicated by a record that contains ":EOF:". Any record with
a colon in column one is an end-of-file to $STDIN. ":EOD",
":EQJ", ":JOB", ":DATA", and ":EOF:" are end-of-file to $STDINX.

The default end of record terminator is carriage return. You
should change this if the device terminates all records with some
other character. You can specify an alternate terminator that
will terminate a record in addition to carriage return. Choose
the teminator so that it is the last character input. For a
device that sends a linefeed after carriage return, try to use
linefeed as the terminator instead of carriage return. See
FCONTROL 41 below.

Some devices send data followed by a fixed terminator
followed by a LRC or CRC character. This error checking
character can take on all values, thus it can not be used as a
terminator. Unfortunately, it often looks like XOFF which will
halt any further output to the device.

You may want to trap certain errors returned by FREAD to your
program: 22, software time-out; 31, end of line (alternate
terminator); and 28, timing error or data overrun. This last
error occurs frequently on ADCCs running at high speeds.

Paper 3055 10

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 8S

ATC + The characters NULL, BS, LF, CR, DCl, DC3, CAN
{control-x), EM (control-y), ESC:, ESC;, and DEL are stripped
from the input stream for both session and programmatic devices.

ADCC/ATP - The characters NULL, BS, LF, CR, DCl1, DC2, DC3,
CAN (control-x), EM (control-y) and DEL are stripped from the
input stream for both session and programmatic devices. There is
a patch available that deletes recognition of ESC: and ESC; while
gsolving certain overrun problems, the patch is strongly
recommended. A DC2 at the beginning of the line causes the
driver to send another DCl to the terminal, as it thinks that a
block mode read has started.

Each time you issue an FREAD to the terminal, MPE sends a DCl
to the terminal to indicate that it is ready to accept data.
Most devices ignore, totally, the DCl. If your device reacts
negatively to the DCl, use termtype 18 which suppresses the DC1
on terminal reads. The device must not send data to the HP-3000
until it has received the DCl1l, otherwise the data will he lost.
If the device does not wait for the DCl you must supply external
hardware that will provide buffering and wait for the DCl; or you
can solve the problem on the HP-3000 by using two ports to access
the device. One port is opened for reading and the other for
writing. A no-wait read is issued before the write that causes
the device to send data, then the read is completed. Connect the
terminal’s pin 2 (Transmit Data), to the read port’s pin 2;
connect the terminal’s pin 3 (Receive Data), to the write port’s
pin 3; and connect the terminal’s pin 7 (Signal Ground), to pin 7
of both ports. (This two port scheme was first introduced to me
by Jack Armstrong and Martin Gorfinkel of LARC.)

The ADCC and ATP now offer another possible solution to this
buffering problem. If the device waits for some character from
the computer ©before transmitting data, the FDEVICECONTROL
intrinsic can be used to have the driver send that character
rather than DCl1 on each read. Your program would write the
prompt sequence less the final trigger character, then perform
the read which supplies the trigger character.

FWRITE

You call FWRITE to send data to the device. The carriage
control (cctl) value of %320 is often used to designate that MPE
send no carriage control bytes, such as CR/LF, to the device.
Control returns to your program from FWRITE as soon as the data
is loaded into the terminal buffers, MPE does not wait until all
data has been output to the device. If you must know when the
actual output is complete, the temptation is to use FSETMODE to
enable critical output verfication. Unfortunately, this isn’t
implemented for terminals. However, you can achieve the same
effect by calling FCONTROL to set the desired echo state after
each write. The FCONTROL will not complete until the write is
physically complete.

P 0 1
aper 3055 1 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

ATC - the initial FWRITE to an HP terminal termtype causes an
ENQ to be sent to the terminal.

ADCC/ATP - the initial FWRITE does not send an ENQ.

FSETMODE - L4 - Suppress carriage return/linefeed

In hormal operation a line feed is sent to the terminal if the
input line terminates with a carriage return, a CR/LF is sent to
the terminal if the line terminates by count, and nothing is sent
if the line terminates with an alternate terminator. These extra
characters may not be desirable in certain applications.
FSETMODE 4 suppresses these linefeeds and carriage returns.
FSETMODE 0 returns to normal line termination handling, an FCLOSE
also returns the device to the normal mode.

FCONTROL

FCONTROL is the workhorse intrinsic for managing a
programmatic device on the HP-3000. Each use of FCONTROL will be
shown separately but it will usually be the case that several
calls will be used. Most calls are required only once, but the
timer calls are required for each input operation. Each call
will be identified by the controlcode parameter that is passed to
FCONTROL.

FCONTROL - b + Set input time-out

This option sets a time limit on the next read from the
terminal. It should always be used with devices that operate
without an attached User to prevent a "hang.” If something goes
wrong with the device, your program will not wait forever;
control will be returned eventually. The FREAD will fail and a
call to FCHECK will return the errorcode 22 (software time-out).
No data is returned to your buffer in the case of a time-out; any
data entered before the time-out is lost.

If you issue a timeout for a block mode read on the ATC, the
timer is stopped if a DC2 is received from the terminal. A new
timer is started which runs for 30 seconds plus the expected data
transfer time. If the read doesn’t complete, an error 27 is
reported. On the ADCC/ATP, receipt of the DC2 dces not stop the
timer. It continues to run and if the read doesn’t complete, an
error 27 is reported. 1In all cases, an error 22 is reported if
no DC2 is received and the read doesn’t complete. To get the
ADCC/ATP to start a new timer on receipt of a DC2, FCONTROL 31
must be used which starts a new timer for 10 seconds plus the
expected data transfer time.

Paper 3055 12 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

FCONTROL - 10, 11 - Set terminal input/output speed

These FCONTROL options allow you to change the terminal input
and output speeds. FCONTROL 37 can also be used to set terminal
speed. It sets termtype as well and is the method that I prefer.

ATC - Split speeds are allowed.

ADCC/ATP - Split speeds are not allowed, FCONTROL 10 does
nothing and FCONTROL 11 sets both input and output speed.

FCONTROL + 12, 13 - Enable/disable input echo

These FCONTROL options allow you to enable and disable
terminal input echoing. Many devices that attach to the HP-3000
do not expect or desire echoing of the characters they transmit.
This option, along with FSETMODE U4, completely turns off input
echoing. Echoing is not restored when a file is closed, so you
should always put echo back the way it was found.

FCONTROL -~ 1k, 15 « Disable/enable system break

The break key should be disabled if terrible things happen
when the user hits break and aborts out of a program. You, the
programmer, always seem to need break for debugging purposes and
discover that you have it turned off. System break can only be
enabled for session devices, it is not allowed for programmatic
devices. If break is entered on a session device, the data
already input will be retained and provided to the user program
after a resume and completion of the read. If a break is entered
on a programmatic device, a null will be echoed to the device,
but ro data is lost. .

FCONTROL - 16, 17 - Disable/enable subsystem break

Subsystem break is recognized only on session devices; it can
be enabled on programmatic devices but has no effect. If a
control-y is entered during a read, the read terminates and the
data already input will be retained and provided to the user
program after the control-y trap procedure returns. If control-y
is disabled, any control-y will be stripped from the input but no
trap procedure is called and the read continues. Control-y trap
procedures are armed by the XCONTRAP intrinsic. A subsystem
break character other than control-y may be specified when
unedited terminal mode (FCONTROL 41) is used. In programmatic
mode, the subsystem break character is always stripped from the
input stream.

Paper 305% 13

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

FCONTROL - 18, 19 - Disable/enable tape mode

ATC - This is effectively an FSETMODE 4, an FCONTROL 35, and
suppression of backspace echoing, all rolled into one.

ADCC/ATP + Tape mode can not be enabled.

FCONTROL - 20, 21, 22 - Disable/enable terminal input timer, read
timer

These options can be used to determine the length of time it
took to satisfy a terminal read. It is not a time-out, that is
FCONTROL 4. The manual states that you must enable the timer
before each read, so why is there a disable option? If you read
the timer without enabling the timer, you get the time of the
most recent read that did have the timer enabled. The number
returned is the length of the read in one-hundreths of a second.

FCONTROL - 23, 24 - Disable/enable parity checking

This option enables parity checking on input for the parity
sense specified by FCONTROL 36.

ATC - This option affects input parity checking only, output
parity generation is controlled by FCONTROL 36.

ADCC/ATP - This options controls both input parity checking
and output parity generation, FCONTROL 36 only specifies the type
of parity.

FCONTROL ~ 25 - Define alternate line terminator

This option is used to select an alternate character that
will terminate terminal input in addition to carriage return. It
is useful if your device terminates input with something other
than return. No CR/LF is echoed at line termination.

ATC - NULL, BS, LF, CR, DCl, DC3, CAN, EM and DEL are not
allowed as terminators. The manual claims that DC2 and ESC are
not allowed as terminators, but they work. If a DC2 is the first
input character from an HP termtype terminal, the HP-3000 drops
the DC2 and sends a DCl back to the terminal, and thinks a block
mode transfer 1is starting. Any other DC2 is recognized as a
terminator, if enabled. By enabling user block mode transfers
(FCONTROL 29), a DC2 as the first character will also be
recognized as a terminator when enabled. For non-HP termtype
terminals a DC2 is always recognized as a terminator when
enabled.

ADCC/ATP - everything {except NULL) 1is allowed as an

alternate terminator, even carriage return.

Paper 3055 14 WASHINGTON, D. €

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

If a line terminates with the alternate terminator, the
character will be included in the input buffer and counted in the
length. A read terminated by the alternate character always
returns an error condition. You must call FCHECK to determine
that the read terminated with the alternate character, which is
indicated by errorcode 31.

FCONTROL + 26, 27 - Disable/enable binary transfers

Binary transfers can be used to transmit full 8-bit
characters to and from the terminal. On input, a read will only
be satisfied by receiving all characters requested, a carriage
return (or alternate terminator) will not terminate the read.
Thus, you must always know how many characters to read on each
input from the terminal. Enabling binary transfers also turns
off the ENQ/ACK flow control protocol and carriage control on
output. No special characters are recognized on input. No CR/LF
is echoed to the terminal at the end of the read. If a session
device is being accessed in binary mode, a break will remove the
terminal from binary mode but it will not be returned to binary
mode when a resume is executed.

FCONTROL - 28, 29 - Disable/enable user block mode transfers

As described above, the normal sequence of events in a block
mode transfer from an HP terminal to the HP-3000 is for the
HP-3000 to send a DC1 to the terminal indicating its readiness to
accept data. The terminal sends a DC2 when the enter key is
struck to indicate that it is ready to send data. The HP-3000
responds with another DCl1 when it is really ready to take the
data. Finally, the terminal sends the data. All of this is
transparent to your program which just issues a big read. If you
would like to participate in this handshake you enable user block
mode transfers and MPE relinquishes control of the handshake.
Your program would issue a small read, get the DC2, and issue
another read to accept the data. This allows you to meddle
before the data shows up.

FCONTROL - 30, 31 - Disable/enable V/3000 driver control

This option is an undocumented option in which the terminal
driver provides low level support for V/3000 use of terminals.
When V/3000 issues a read to the terminal, the driver outputs a
DCl; the terminal user hits enter, which causes a DC2 to be sent
to the 3000; the driver responds with ESC H ESC ¢ DC1, which
locks the keyboard and homes the cursor; it appears that the
driver also enables binary transfers, because the second read
only terminates by count, not by terminator. Until the DC2 is
received, the read looks like an unedited mode read with CR as
the terminator, except that the read doesn’t fail. Any
characters received before a DC2 are discarded {as are an

Paper 3055 15

WASHINGTON, O. C,

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

indeterminate number of characters that immediately follow the
DC2). Typically, this would be a CR(LF) when the terminal is
operating in block, line mode. The ATC sends ESC ¢ ESC H (just a
little inconsistency to keep you awake.)

The terminal driver only supports block mode transfers with
HP termtypes and performs one other function during block mode
transfers. Normally you wouldn’t put a timeout (FCONTROL 4) on a
block mode read because the user can take an indefinite amount of
time to fill a screen; but you would like to avoid terminal hangs
because data or the terminator from the terminal gets lost. This
situation is handled by the driver for you; the portion of the
read after receipt of the DC2 is timed for (#chars in read/#chars
per sec)+10 seconds. If some data or the terminator is lost and
the read times out, the read will fail and FCHECK will return
error 27. The ADCC/ATP do not perform this function unless
FCONTROL 31 1is in effect. The ATC performs this function
regardless of the FCONTROL 31 state and uses 30 seconds instead
of 10 seconds when starting the timer.

FCONTROL - 34, 35 - Disable/enable line deletion echo suppression

Option 35 disables the !!! CR/LF echo whenever a control-x is
received from the terminal. The control-x still causes all data
to be deleted from the input buffer. The ADCC/ATP disables the
{14, but not the CR/LF.

FCONTROL - 36 - Set parity

This FCONTROL option sets the sense of the parity generated
on output and checked on input. The four possibilities are: 0,
space or no parity, all 8 bits of the data are passed thru; 1,
mark parity, the parity bit is always set to one; 2, even, even
parity is generated on all characters; and 3, odd parity, odd
parity is generated on all characters,

An undocumented effect of this FCONTROL call is that the
previous parity setting is returned in the "param" parameter,
wiping out its original value!

ATC - FCONTROL 36 sets the parity sense and enables output
parity generation. FCONTROL 24 must be called to enable parity
checking on input.

ADCC/ATP - FCONTROL 36 sets the parity sense only. FCONTROL
24 must be called to enable output parity generation which
results in input parity checking, as well.

On the ATC, parity is not reset to the default when a device
is closed. This can be useful if you have a session device that
can not run with the default parity. Each time the system is
started, run a program that: opens the device, sets the parity,

Paper 3055 16

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

and closes the device. It can then be accessed as a session
device with the required parity.

On the ATC, the default parity for programmatic devices is
odd parity on output and no parity checking on input with the
parity bits set to zero. The ADCC and ATP default to parity
pass-through for programmatic devices. Note that there is no way
on the ADCC/ATP to request the default parity setting. This
makes it difficult to write a program that sets parity
pass-through without knowledge of the machine type; except for a
subtle trick: issue an FCONTROL 36/0 without an FCONTROL 2k. On
the ATC, this results in parity pass-through on output, with
parity stripping (without checking) on input. Without an
FCONTROL 24, the FCONTROL 36 has no effect on the ADCC/ATP,
leaving the default parity pass-through in effect.

The following tables shows the results of testing the various
parity options. In each case, both FCONTROL 24 and FCONTROL 36

were specified so that parity generation was enabled on output
and parity checking was enabled on input.

Option 0 - Space parity or parity pass-through

ATC - pass-through parity on output, did no checking and
stripped parity bits on input.

ADCC - generated even parity on output, checked for even
parity on input.

ATP - generated space parity on output, checked for even
parity on input.

Option 1 - Mark parity

ATC - generated mark parity on output, did no checking and
stripped parity bits on input.

ADCC - generated odd parity on output, checked for odd parity
on input.

ATP - generated mark parity on output, checked for odd parity
on input.

Option 2 - Even parity

ATC/ADCC/ATP - generated even parity on output, checked for
even parity on input and stripped parity bits.

Option 3 - 0dd parity

ATC/ADCC/ATP - generated odd parity on output, checked for
odd parity on input and stripped parity bits.

Paper 3055 17 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S5

FCONTROL - 37 ~ Allocate a terminal

In the old days you had to allocate a programmatic terminal
before it could be used - now you don’t. This option is still
useful, however, because you can set the termtype and terminal
speed with one FCONTROL call. Common sense (mine at least) says
to set termtype and speed each time a device is opened, even if
the proper values are configured.

FCONTROL « 38 - Set terminal type

This option allows you to set the terminal type, but use
FCONTROL 37, and set type and speed all in one shot.

FCONTROL -~ 39 - Obtain terminal type information

Before changing the terminal type, get the current value and
reset it when you are through.

FCONTROL - b0 - Obtain terminal output speed

Before changing the terminal speed, get the current value and
reset it when you are through.

FCONTROL - 41 - Set unedited terminal mode

Unedited terminal mode is probably the most useful FCONTROL
option used to communicate with programmatic devices. It allows
almost all control characters to pass through to the HP-3000
without requiring reads of exact length, as in binary transfers.
Input will terminate on a carriage return or an alternate
terminator, if specified. The subsystem break character,
replacing control-y, can also be specified, but is only effective
on session devices.

ATC - all input parity bits are set to zero (7 bit mode).
Unedited mode overrides parity checking.

ADCC/ATP - all input parity bits are passed through (8 bit
mode). Parity checking, when enabled, overrides unedited mode
and all input parity bits are set to zero (7 bit mode).

Binary transfers, when enabled, override unedited terminal
mode enabled. If the input terminates with the end-of-record
character or alternate terminator, no CR/LF is sent to the
terminal. If the input terminates by count, a CR/LF is sent to
the terminal unless an FuETMODE 4 has been done. Unedited mode
does not turn off the ENQ/ACK flow control protocol.

Paper 3055 18

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

FDEVICECONTROL

This intrinsic is related to FCONTROL in the #ame manner that
FFILEINFO is related to FGETINFO. Many of the same functions are
supported, as are many new functions. FDEVICECONTROL provides
intrinsic access to the new features supported by the Workstation
Configurator. Unfortunately, the mahual states that many of the
features will not be supported at all in the future or will not
be supported programmatically. Read the manual carefully before
using these virtual features.

PTAPE

The manual describes PTAPE as the intrinsic¢c to use to read
paper tapes. (Paper tape is a fancy data-entry media that is
becoming increasingly popular.) It can be used on the HP-3000 to
access devices that send up to 32767 characters all in one shot,
subject to a few limitations. The data must be record oriented
with carriage returns between records; MPE will cut the data into
256 character records if there are no returns; and the whole mess
must be terminated by a control-y. Certain buffering terminals
allow you to: fill their memory off-line, connect to a computer,
and transmit all the data. This could save considerable time and
money over dial-up phone lines.

DEBUGGING

If you have a requirement to attach a programmatic device to
the HP-3000, the worst strategy is to write some code on the
HP-3000, plug the device in and start testing. Murphy says it
won't work and it won’t. The method I use is to test the device,
then test the code, and then test the code and the device
together. I test the device by plugging it into an HP-2545 (or
equivalent) terminal, turning on monitor mode, and simulate the
HP-3000 by typing on the keyboard. (Remember that you are
hooking two terminals together; you will probably hook device pin
2 to 2645 pin 3, device pin 3 to 2645 pin 2, and device pin 7 to
2645 pin 7.) You can stimulate the device and observe all
responses quite simply. Any strange behavior can be noted at
this point. The next step is to write the code on the HP-3000 to
access the device in the manner determined by the first tests.
Then plug the HP-2645, not the device, into the HP-3000. Now
type on the 2645 to simulate the device, continue until ycur code
is debugged. Now you can plug the device into the HP-3000 and
you have a good (modulo Murphy) chance of actually getting it to
work.

=
Paper 3055 19 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX85

REFERENCES

Data Communications Handbook (Fundamental), Hewlett-Packard
Company, June 1984, Part # 5957-u463L.

Roseville Terminals Cabling Manual, Hewlett-Packard Company, Part
5957-9918.

Black Box Catalog, P.0. Box 12800, Pittsburgh, PA 15241, {u412)
Tu6-5500 A catalog that is required in every shop.

HP Point-to-Point Workstation I/0 Reference Manual, Hewlett-
Packard Company, December 1984, Part # 30000-90250.

Paper 3055 20 WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX8S

3057. PERFORMANCE OPTIMIZATION IN COBOL

Bruce Tobak
2205 Fulton Road
La Verne, California 91750

The first standard COBOL was proposed in 1960, when computers

were very different from today's mini- and microcomputers. They

were single-user, multi-priest behemoths with architectures designed

to fit the electronic components merely expensive. The processor

itself required a large corporation and a large staff to purchase and
maintain it.

The original COBOL standard was designed with these facts in mind, and
many of the programming practices and accumulated wit and wisdom of the
COBOL programmer come from those times. Presented here is a selection of
that wit and wisdom, and how it relates to COBOL/3000 (and indeed most
modern computers).

1. Indexing is faster than subscripting.

Remember registers? (If you ever programmed in assembly language, you
certainly do. If you’'ve only programmed in a high-level language, you
probably don’t.) General purpose computers usually had a limited number
of these high-speed memory locations, generally eight or sixteen. The
compiler, when generating code for a COBOL source program used several
of these for itself, but the remainder were available to the programmer
for USAGE IS INDEX items. Indexing was much faster than subscripting
because in order to access an array element, a subscript would have to
be brought into a register, and possibly converted to a different data
type. Indexing, by definition, meant using an item which was already in
a register, so bypassing the conversation and data movement steps. Worse
still, some computers had addresses that could be operated on only by
special instructions (e.g., the Burroughs B200/300/500 series). This is
the reason that indices can only be added to or subtracted from.

On the HP3000, though, there is only one index register, andit is shared
by all arrays. Therefore, as long as the subscript you are using is
USAGE COMP PICS9(4), there is no difference between indexing and
subscripting - either in the generated code or the speed of the
resulting program. Shops which try to speed up programs by converting
them to wuse indexing would be better off devoting the time yo
programmers’ vacations: system performancewould then at least be
improved because of a smaller program development 1load! However,
performance can be improved by changing your subscripts from COMP-3 to
COMP: the compiler emits code necessary to do the required conversion,
but this is relatively expensive in run time. (But see 5.)

2. COBOL sorts take longer than external sorts.
This is very application dependent, and again has strong roots in
history and folklore. In the Dark Times, the COBOL SORT verb generated

in-line code to call some routines the compiler folks wrote. The
compiler folks generally had better things to do than write sorts, so

PAPER 3057 1

WASHINGTON, D. C.

BALTIMORE WASHINGTON REGIONAL USERS GROUP INTEREX 85

the sorts were not necessarily very good. In addition, these sorts were
not very adaptive to circumstances, and had a limited performace range.
They might involve additional overlays that had to be read in from
(heaven forbid!) cards. Besides, in a ©batch-oriented, job-step
environment there was not much point to an internal sort. On the
HP3000, though, all sorting 1is done by the SORT/3000 subsystem,
regardless of whether you use SORT.PUB.SYS or the COBOL SORT verb: the
HP3000 COBOL compilers simply emit code to call SORT/3000 intrinsies on
behalf of your program. The result of this is that sorts done with the
same sets of keys and in the same kinds of environments will take the
same amount of time, regardless of whether you envoke them through COBOL
or through MPE.

The key here is in the same kinds of environments. SORT/3000 needs
memory to work: the more, the better. If your COBOL program requires 20k
words of memory for itself when you execute the SORT verb, SORT/3000
will get only about 9k. Experiments show that when sorting 80-byte
records, SORT/3000 needs about 8k words to produce acceptable
performance, and works best with at least 16k words. So, you’ll have
better performance with an external sort...

Sometimes, to determine whether to use an internal sort or an external
one, you should look at your entire application. Many batch-oriented
systems converted to run on the HP3000 have jobsteps that include a sort
to a temporary file, a report on the temp file, a different sort to a
temp file, a report on the new temp file, and so on. This means that
each record in your master file is being handled three times: once as
imput to the sort, once as output to the t